中文版 | English
题名

Design of novel BCC compositionally complex alloys based on low-activation elements

姓名
姓名拼音
JIANG Heng
学号
11950024
学位类型
博士
学位专业
Mechanical Engineering
导师
何斌斌
导师单位
机械与能源工程系
外机构导师
Mingxin HUANG
外机构导师单位
香港大学
论文答辩日期
2024-09-02
论文提交日期
2024-09-19
学位授予单位
香港大学
学位授予地点
香港
摘要

The structural materials used in Generation IV nuclear reactors necessitate robust mechanical properties in high-temperature environments to ensure the reactors operate safely. Compared to conventional alloys, compositionally complex alloys (CCAs) demonstrate suppressed defect cluster evolution and reduced energy dissipation under radiation. Due to the introduction of high-activation elements in face-centered cubic (FCC) CCAs, body-centered cubic (BCC) counterparts with only low-activation elements are regarded as promising candidates. However, the insufficiency of plasticity impedes their potential application. The main objective of this thesis is to design novel low-activation BCC CCAs and validate their tensile properties.

In the first part, a crucial feature space was developed and validated to rapidly discover ductile BCC CCAs. A classification and regression tree (CART) algorithm was applied to the comprehensive dataset to distinguish the “Class 1” samples with a compressive fracture strain larger than 50%. The applicability of the CART classifier was authenticated by training and testing F1 scores and accuracies. Consequently, Pugh’s ratio (κ) and valence electron concentration (VEC) are confirmed as two crucial attributes for identifying the objective CCAs. According to the proposed crucial κ-VEC feature space, the “Class 1” alloys are mostly located in the area where κ is larger than 3.129 or VEC is larger than 6.296.

Then, for the first time, a novel low-activation VCrFeMn0.33 BCC CCA was developed and investigated, showing satisfactory tensile ductility and typical ductile fracture behavior at temperatures above 650 °C but brittle fracture below 500 °C, indicating the ductile-to-brittle transition temperature (DBTT) of current CCA falls between 500 °C and 650 °C. Same as the conventional ductile alloys, the CCA demonstrated a dislocation-dominated plasticity while straining above DBTT, a behavior seldom observed in non-refractory BCC CCAs.

Additionally, the influences of isothermal treatment durations and heat treatment conditions on the tensile behaviors of the VCrFeMn0.33 CCA were assessed respectively. As the 650 °C isothermal treatment duration is prolonged, the strength decreases marginally, whereas the ductility declines noticeably and transitions to brittle fracture. The deterioration in ductility might be ascribed to phase transformations. The tensile performance of the as-rolled samples outperforms the as-recrystallized counterparts subjected to deformation at intermediate temperatures, indicating their superior crack propagation resistance.

Finally, we first discovered a new compositionally complex oxide (CCO), Mn(V,Ti,Al)2O4, with a spinel structure that is embedded in a new BCC CCA matrix. Leveraging neutron diffraction and HRTRM, the crystallography and orientation relationship of CCO and CCA are thoroughly elucidated. The results of nano-indentation experiments demonstrate that the localized strength of CCA can be efficiently elevated from ~9.20 GPa to ~11.45 GPa by the introduction of CCO. This work illustrates that combining new CCO with new CCA could be a new strategy for developing new oxide-metal composites. Additionally, the potential radiation resistance properties of the low-activation BCC CCA are expected to be promoted through the involvement of this nanometer-sized CCO.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-12
参考文献列表
[1] S.J. Zinkle, G. Was, Materials challenges in nuclear energy, Acta Materialia 61(3) (2013) 735-758.
[2] G. Was, D. Petti, S. Ukai, S. Zinkle, Materials for future nuclear energy systems, Journal of Nuclear Materials 527 (2019) 151837.
[3] M. Moschetti, P.A. Burr, E. Obbard, J.J. Kruzic, P. Hosemann, B. Gludovatz, Design considerations for high entropy alloys in advanced nuclear applications, Journal of Nuclear Materials 567 (2022) 153814.
[4] S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Materials today 12(11) (2009) 12-19.
[5] T. Shi, P.-H. Lei, X. Yan, J. Li, Y.-D. Zhou, Y.-P. Wang, Z.-X. Su, Y.-K. Dou, X.-F. He, D. Yun, Current development of body-centered cubic high-entropy alloys for nuclear applications, Tungsten 3(2) (2021) 197-217.
[6] W. Van Renterghem, M. Konstantinović, M. Vankeerberghen, Evolution of the radiation-induced defect structure in 316 type stainless steel after post-irradiation annealing, Journal of Nuclear Materials 452(1-3) (2014) 158-165.
[7] B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, Irradiation behavior of nanostructured 316 austenitic stainless steel, Journal of Materials Science 43 (2008) 7338-7343.
[8] C. Cawthorne, E. Fulton, Voids in irradiated stainless steel, Nature 216(5115) (1967) 575-576.
[9] A.-A. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, H. Tanigawa, Current status and recent research achievements in ferritic/martensitic steels, Journal of Nuclear Materials 455(1-3) (2014) 269-276.
[10] A. Bhattacharya, S.J. Zinkle, J. Henry, S.M. Levine, P.D. Edmondson, M.R. Gilbert, H. Tanigawa, C.E. Kessel, Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: a review, Journal of Physics: Energy 4(3) (2022) 034003.
[11] H. Tanigawa, K. Shiba, A. Möslang, R. Stoller, R. Lindau, M. Sokolov, G. Odette, R. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, Journal of Nuclear Materials 417(1-3) (2011) 9-15.
[12] B. Raj, M. Vijayalakshmi, Ferritic steels and advanced ferritic–martensitic steels, Comprehensive Nuclear Materials (2012) 97-121.
[13] H. Tanigawa, E. Gaganidze, T. Hirose, M. Ando, S. Zinkle, R. Lindau, E. Diegele, Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications, Nuclear Fusion 57(9) (2017) 092004.
[14] N. Baluc, R. Schäublin, P. Spätig, M. Victoria, On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors, Nuclear Fusion 44(1) (2003) 56.
[15] S.J. Zinkle, J. Blanchard, R.W. Callis, C.E. Kessel, R.J. Kurtz, P.J. Lee, K. McCarthy, N. Morley, F. Najmabadi, R. Nygren, Fusion materials science and technology research opportunities now and during the ITER era, Fusion Engineering Design 89(7-8) (2014) 1579-1585.
[16] E. Gaganidze, J. Aktaa, Assessment of neutron irradiation effects on RAFM steels, Fusion Engineering Design 88(3) (2013) 118-128.
[17] J. Henry, X. Averty, Y. Dai, J. Pizzanelli, Tensile behaviour of 9Cr–1Mo tempered martensitic steels irradiated up to 20 dpa in a spallation environment, Journal of Nuclear Materials 377(1) (2008) 80-93.
[18] E. Gaganidze, H.-C. Schneider, B. Dafferner, J. Aktaa, Embrittlement behavior of neutron irradiated RAFM steels, Journal of Nuclear Materials 367 (2007) 81-85.
[19] E. Gaganidze, H.-C. Schneider, B. Dafferner, J. Aktaa, High-dose neutron irradiation embrittlement of RAFM steels, Journal of Nuclear Materials 355(1-3) (2006) 83-88.
[20] Z. Tong, Y. Dai, Tensile properties of the ferritic martensitic steel F82H after irradiation in a spallation target, Journal of Nuclear Materials 385(2) (2009) 258-261.
[21] E. Wakai, M. Ando, S. Matsukawa, T. Taguchi, T. Yamamoto, H. Tomita, F. Takada, Effect of initial heat treatment on DBTT of F82H steel irradiated by neutrons, Fusion Science Technology 47(4) (2005) 856-860.
[22] E. Wakai, M. Ando, T. Sawai, H. Tanigawa, T. Taguchi, R. Stoller, T. Yamamoto, Y. Kato, F. Takada, Effect of heat treatments on tensile properties of F82H steel irradiated by neutrons, Journal of Nuclear Materials 367 (2007) 74-80.
[23] H. Oka, T. Tanno, Y. Yano, S. Ohtsuka, T. Kaito, Y. Tachi, Microstructural stability of ODS steel after very long-term creep test, Journal of Nuclear Materials 547 (2021) 152833.
[24] A. Certain, S. Kuchibhatla, V. Shutthanandan, D. Hoelzer, T. Allen, Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels, Journal of Nuclear Materials 434(1-3) (2013) 311-321.
[25] D. Yun, C. Lu, Z. Zhou, Y. Wu, W. Liu, S. Guo, T. Shi, J.F. Stubbins, Current state and prospect on the development of advanced nuclear fuel system materials: A review, Materials Reports: Energy 1(1) (2021) 100007.
[26] S. Ohtsuka, S. Ukai, M. Fujiwara, Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels, Journal of Nuclear Materials 351(1-3) (2006) 241-246.
[27] H. Oka, T. Tanno, S. Ohtsuka, Y. Yano, T. Kaito, Effect of nitrogen concentration on nano-structure and high-temperature strength of 9Cr-ODS steel, Nuclear Materials Energy 16 (2018) 230-237.
[28] H. Xu, Z. Lu, C. Jia, H. Gao, C. Liu, Microstructure and mechanical property of 12Cr oxide dispersion strengthened steel, High Temperature Materials Processes 35(3) (2016) 321-325.
[29] S. Rajulapati, L. Verma, H. Pal, V. Dabhade, U. Prakash, Effect of yttria content on microstructural evolution, mechanical properties and temperature dependent strengthening mechanisms in 9Cr-oxide dispersion strengthened (ODS) steel developed by hot powder forging, Materials Today Communications (2024) 109661.
[30] X. Wang, X. Shen, Research progress of ODS FeCrAl alloys–a review of composition design, Materials 16(18) (2023) 6280.
[31] H. Jia, Y. Wang, Y. Wang, L. Han, Y. Zhang, Z. Zhou, Recent Progress on Creep Properties of ODS FeCrAl Alloys for Advanced Reactors, Materials 16(9) (2023) 3497.
[32] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303.
[33] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563(7732) (2018) 546-550.
[34] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534(7606) (2016) 227-230.
[35] T. Yang, Y. Zhao, W. Li, C. Yu, J. Luan, D. Lin, L. Fan, Z. Jiao, W. Liu, X. Liu, Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces, Science 369(6502) (2020) 427-432.
[36] T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, J. Kai, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science 362(6417) (2018) 933-937.
[37] E. Ma, X. Wu, Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy, Nat Commun 10(1) (2019) 5623.
[38] P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat Commun 10(1) (2019) 489.
[39] S. Wei, S.J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E.S. Park, C.C. Tasan, Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility, Nat Mater 19(11) (2020) 1175-1181.
[40] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563(7732) (2018) 546-550.
[41] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158.
[42] D. Liu, Q. Yu, S. Kabra, M. Jiang, P. Forna-Kreutzer, R. Zhang, M. Payne, F. Walsh, B. Gludovatz, M. Asta, Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 kelvin, Science 378(6623) (2022) 978-983.
[43] Y. Xiao, Y. Zou, H. Ma, A.S. Sologubenko, X. Maeder, R. Spolenak, J.M. Wheeler, Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness, Scripta Materialia 168 (2019) 51-55.
[44] X. Zhang, F. Wang, X. Yan, X.-Z. Li, K. Hattar, B. Cui, Nanostructured Oxide‐Dispersion‐Strengthened CoCrFeMnNi High‐Entropy Alloys with High Thermal Stability, Advanced Engineering Materials 23(9) (2021) 2100291.
[45] V. Pacheco, G. Lindwall, D. Karlsson, J. Cedervall, S. Fritze, G. Ek, P. Berastegui, M. Sahlberg, U. Jansson, Thermal stability of the HfNbTiVZr high-entropy alloy, Inorganic Chemistry 58(1) (2018) 811-820.
[46] P. Sathiyamoorthi, J. Basu, S. Kashyap, K. Pradeep, R.S. Kottada, Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite, Materials & Design 134 (2017) 426-433.
[47] N. Liang, R. Xu, G. Wu, X. Gao, Y. Zhao, High thermal stability of nanocrystalline FeNi2CoMo0. 2V0. 5 high-entropy alloy by twin boundary and sluggish diffusion, Materials Science and Engineering: A 848 (2022) 143399.
[48] Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao, C. Ma, Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy, Materials Science and Engineering: A 835 (2022) 142670.
[49] H. Jiang, D. Qiao, Y. Lu, Z. Ren, Z. Cao, T. Wang, T. Li, Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability, Scripta Materialia 165 (2019) 145-149.
[50] A. Karati, K. Guruvidyathri, V. Hariharan, B. Murty, Thermal stability of AlCoFeMnNi high-entropy alloy, Scripta Materialia 162 (2019) 465-467.
[51] J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng, Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation, Scripta Materialia 187 (2020) 335-339.
[52] X. An, Z. Liu, L. Zhang, Y. Zou, X. Xu, C. Chu, W. Wei, W. Sun, A new strong pearlitic multi-principal element alloy to withstand wear at elevated temperatures, Acta Materialia 227 (2022) 117700.
[53] J. Luo, W. Sun, D. Liang, K. Chan, X.-S. Yang, F. Ren, Superior wear resistance in a TaMoNb compositionally complex alloy film via in-situ formation of the amorphous-crystalline nanocomposite layer and gradient nanostructure, Acta Materialia 243 (2023) 118503.
[54] W. Zhu, C. Zhao, Y. Zhang, C.T. Kwok, J. Luan, Z. Jiao, F. Ren, Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry, Acta Materialia 188 (2020) 697-710.
[55] K.-M. Hsu, S.-H. Chen, C.-S. Lin, Microstructure and corrosion behavior of FeCrNiCoMnx (x= 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4, Corrosion Science 190 (2021) 109694.
[56] L. Wei, W.-M. Qin, J.-Y. Chen, W.-X. Lei, J.-Y. Xi, L21-strengthened face-centered cubic high-entropy alloy with well pitting resistance, Corrosion Science 215 (2023) 111043.
[57] K. Yu, S. Feng, C. Ding, P. Yu, M. Huang, Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions, Corrosion Science 208 (2022) 110616.
[58] H. Wang, W. Chen, Z. Fu, C. Chu, Z. Tian, Z. Jiang, H. Wen, Lightweight Ti-Zr-Nb-Al-V refractory high-entropy alloys with superior strength-ductility synergy and corrosion resistance, International Journal of Refractory Metals and Hard Materials 116 (2023) 106331.
[59] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31(6) (2006) 633-648.
[60] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Current Science 85(5) (2003) 1404-1406.
[61] W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials, Nature Reviews Chemistry (2024) 1-15.
[62] A. Mehta, Y.H. Sohn, Fundamental core effects in transition metal high-entropy alloys:“High-entropy” and “sluggish diffusion” effects, Diffusion Foundations 29 (2021) 75-93.
[63] K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[64] C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, Lattice distortion in a strong and ductile refractory high-entropy alloy, Acta Materialia 160 (2018) 158-172.
[65] C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Lattice‐distortion‐enhanced yield strength in a refractory high‐entropy alloy, Advanced Materials 32(49) (2020) 2004029.
[66] H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu, W. Zhao, Z. Chen, H. Gong, Y. Yang, Multifunctional high entropy alloys enabled by severe lattice distortion, Advanced Materials 36(17) (2024) 2305453.
[67] L. Wang, L. Zhang, X. Lu, F. Wu, X. Sun, H. Zhao, Q. Li, Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage, Chemical Engineering Journal 465 (2023) 142766.
[68] Z. Cheng, J. Sun, X. Gao, Y. Wang, J. Cui, T. Wang, H. Chang, Irradiation effects in high-entropy alloys and their applications, Journal of Alloys and Compounds 930 (2023) 166768.
[69] Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, A promising new class of irradiation tolerant materials: Ti2ZrHfV0. 5Mo0. 2 high-entropy alloy, Journal of Materials Science & Technology 35(3) (2019) 369-373.
[70] S. Chang, K.-K. Tseng, T.-Y. Yang, D.-S. Chao, J.-W. Yeh, J.-H. Liang, Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy, Materials Letters 272 (2020) 127832.
[71] O. El-Atwani, N. Li, M. Li, A. Devaraj, J. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, Outstanding radiation resistance of tungsten-based high-entropy alloys, Science Advances 5(3) (2019) eaav2002.
[72] W.-Y. Chen, M.A. Kirk, N. Hashimoto, J.-W. Yeh, X. Liu, Y. Chen, Irradiation effects on Al0. 3CoCrFeNi and CoCrMnFeNi high-entropy alloys, and 316H stainless steel at 500° C, Journal of Nuclear Materials 539 (2020) 152324.
[73] W.-Y. Chen, X. Liu, Y. Chen, J.-W. Yeh, K.-K. Tseng, K. Natesan, Irradiation effects in high entropy alloys and 316H stainless steel at 300 C, Journal of Nuclear Materials 510 (2018) 421-430.
[74] C. Li, X. Hu, T. Yang, N.K. Kumar, B.D. Wirth, S.J. Zinkle, Neutron irradiation response of a Co-free high entropy alloy, Journal of Nuclear Materials 527 (2019) 151838.
[75] M. Moorehead, P. Nelaturu, M. Elbakhshwan, C. Parkin, C. Zhang, K. Sridharan, D.J. Thoma, A. Couet, High-throughput ion irradiation of additively manufactured compositionally complex alloys, Journal of Nuclear Materials 547 (2021) 152782.
[76] S. Shen, F. Chen, X. Tang, J. Lin, G. Ge, J. Liu, Effects of carbon doping on irradiation resistance of Fe38Mn40Ni11Al4Cr7 high entropy alloys, Journal of Nuclear Materials 540 (2020) 152380.
[77] R. Barnes, Embrittlement of stainless steels and nickel-based alloys at high temperature induced by neutron radiation, Nature 206(4991) (1965) 1307-1310.
[78] G. Pu, L. Lin, R. Ang, K. Zhang, B. Liu, B. Liu, T. Peng, S. Liu, Q. Li, Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1. 5CoCrFeNi high entropy alloy films under He ion irradiation, Applied Surface Science 516 (2020) 146129.
[79] Z. Zhang, E.-H. Han, C. Xiang, Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding, Journal of Materials Science & Technology 84 (2021) 230-238.
[80] N. Jia, Y. Li, H. Huang, S. Chen, D. Li, Y. Dou, X. He, W. Yang, Y. Xue, K. Jin, Helium bubble formation in refractory single-phase concentrated solid solution alloys under MeV He ion irradiation, Journal of Nuclear Materials 550 (2021) 152937.
[81] E. Lang, K. Burns, Y. Wang, P.G. Kotula, A.B. Kustas, S. Rodriguez, A. Aitkaliyeva, K. Hattar, Compositional effects of additively manufactured refractory high-entropy alloys under high-energy helium irradiation, Nanomaterials 12(12) (2022) 2014.
[82] D. Chen, S. Zhao, J. Sun, P. Tai, Y. Sheng, G. Yeli, Y. Zhao, S. Liu, W. Lin, W. Kai, Effects of minor alloying addition on He bubble formation in the irradiated FeCoNiCr-based high-entropy alloys, Journal of Nuclear Materials 542 (2020) 152458.
[83] S. Huang, H. Guan, Z. Zhong, M. Miyamoto, Q. Xu, Effect of He on the irradiation resistance of equiatomic CoCrFeMnNi high-entropy alloy, Journal of Nuclear Materials 561 (2022) 153525.
[84] S. Liu, W. Lin, D. Chen, B. Han, S. Zhao, F. He, H. Niu, J.-j. Kai, Effects of temperature on helium cavity evolution in single-phase concentrated solid-solution alloys, Journal of Nuclear Materials 557 (2021) 153261.
[85] Y. Zhao, H. Chen, D. Zhang, J. Zhang, Y. Wang, K. Wu, G. Liu, J. Sun, Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu, Journal of Materials Science & Technology 116 (2022) 199-213.
[86] I. Ivanov, A. Ryskulov, A. Kurakhmedov, A. Kozlovskiy, D. Shlimas, M. Zdorovets, V. Uglov, S. Zlotski, J. Ke, Radiation swelling and hardness of high-entropy alloys based on the TiTaNbV system irradiated with krypton ions, Journal of Materials Science: Materials in Electronics 32 (2021) 27260-27267.
[87] K. Jin, C. Lu, L. Wang, J. Qu, W. Weber, Y. Zhang, H. Bei, Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys, Scripta Materialia 119 (2016) 65-70.
[88] D. Patel, M.D. Richardson, B. Jim, S. Akhmadaliev, R. Goodall, A.S. Gandy, Radiation damage tolerance of a novel metastable refractory high entropy alloy V2. 5Cr1. 2WMoCo0. 04, Journal of Nuclear Materials 531 (2020) 152005.
[89] J. Duan, L. He, Z. Fu, A. Hoffman, K. Sridharan, H. Wen, Microstructure, strength and irradiation response of an ultra-fine grained FeNiCoCr multi-principal element alloy, Journal of Alloys and Compounds 851 (2021) 156796.
[90] M.A. Tunes, V.M. Vishnyakov, O. Camara, G. Greaves, P.D. Edmondson, Y. Zhang, S.E. Donnelly, A candidate accident tolerant fuel system based on a highly concentrated alloy thin film, Materials Today Energy 12 (2019) 356-362.
[91] C.M. Barr, J.E. Nathaniel II, K.A. Unocic, J. Liu, Y. Zhang, Y. Wang, M.L. Taheri, Exploring radiation induced segregation mechanisms at grain boundaries in equiatomic CoCrFeNiMn high entropy alloy under heavy ion irradiation, Scripta Materialia 156 (2018) 80-84.
[92] Y. Lin, T. Yang, L. Lang, C. Shan, H. Deng, W. Hu, F. Gao, Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage, Acta Materialia 196 (2020) 133-143.
[93] T. Shi, Z. Su, J. Li, C. Liu, J. Yang, X. He, D. Yun, Q. Peng, C. Lu, Distinct point defect behaviours in body-centered cubic medium-entropy alloy NbZrTi induced by severe lattice distortion, Acta Materialia 229 (2022) 117806.
[94] Z. Su, J. Ding, M. Song, L. Jiang, T. Shi, Z. Li, S. Wang, F. Gao, D. Yun, E. Ma, Enhancing the radiation tolerance of high-entropy alloys via solute-promoted chemical heterogeneities, Acta Materialia 245 (2023) 118662.
[95] Z. Zhang, Z. Su, B. Zhang, Q. Yu, J. Ding, T. Shi, C. Lu, R.O. Ritchie, E. Ma, Effect of local chemical order on the irradiation-induced defect evolution in CrCoNi medium-entropy alloy, Proceedings of the National Academy of Sciences 120(15) (2023) e2218673120.
[96] E.J. Pickering, A.W. Carruthers, P.J. Barron, S.C. Middleburgh, D.E. Armstrong, A.S. Gandy, High-entropy alloys for advanced nuclear applications, Entropy 23(1) (2021) 98.
[97] M.R. Gilbert, M. Fleming, J.-C. Sublet, Automated inventory and material science scoping calculations under fission and fusion conditions, Nuclear Engineering and Technology 49(6) (2017) 1346-1353.
[98] M.R. Gilbert, T. Eade, T. Rey, R. Vale, C. Bachmann, U. Fischer, N. Taylor, Waste implications from minor impurities in European DEMO materials, Nuclear Fusion 59(7) (2019) 076015.
[99] K.L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, Journal of nuclear materials 383(1-2) (2008) 189-195.
[100] C.R.d.F. Azevedo, Selection of fuel cladding material for nuclear fission reactors, Engineering Failure Analysis 18(8) (2011) 1943-1962.
[101] Z.Q. Xu, Z.L. Ma, Y. Tan, X.W. Cheng, Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility, Scripta Materialia 206 (2022).
[102] O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy, Metallurgical and Materials Transactions A 49(7) (2018) 2876-2892.
[103] X. Yan, P.K. Liaw, Y. Zhang, Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates, Journal of Materials Science & Technology 110 (2022) 109-116.
[104] W. Lai, F. Vogel, X. Zhao, B. Wang, Y. Yi, D. You, X. Tong, W. Li, X. Yu, X. Wang, Design of BCC refractory multi-principal element alloys with superior mechanical properties, Materials Research Letters 10(3) (2022) 133-140.
[105] Z. Han, L. Meng, J. Yang, G. Liu, J. Yang, R. Wei, G. Zhang, Novel BCC VNbTa refractory multi-element alloys with superior tensile properties, Materials Science and Engineering: A 825 (2021) 141908.
[106] W. Huang, J. Hou, X. Wang, J. Qiao, Y. Wu, Excellent room-temperature tensile ductility in as-cast Ti37V15Nb22Hf23W3 refractory high entropy alloys, Intermetallics 151 (2022) 107735.
[107] X. Wang, Q. Yan, G.S. Was, L. Wang, Void swelling in ferritic-martensitic steels under high dose ion irradiation: Exploring possible contributions to swelling resistance, Scripta Materialia 112 (2016) 9-14.
[108] H. Tanigawa, E. Gaganidze, T. Hirose, M. Ando, S.J. Zinkle, R. Lindau, E. Diegele, Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications, Nuclear Fusion 57(9) (2017).
[109] E. Aydogan, J.G. Gigax, S.S. Parker, B.P. Eftink, M. Chancey, J. Poplawsky, S.A. Maloy, Nitrogen effects on radiation response in 12Cr ferritic/martensitic alloys, Scripta Materialia 189 (2020) 145-150.
[110] F. Li, H. Abe, T. Ishizaki, Y. Li, T. Nagasaka, T. Muroga, T. Nagase, H. Yasuda, Stability of oxide particles under electron irradiation in a 9Cr ODS steel at 400 °C, Journal of Nuclear Materials 455(1-3) (2014) 724-727.
[111] W. Han, D. Chen, Y. Ha, A. Kimura, H. Serizawa, H. Fujii, Y. Morisada, Modifications of grain-boundary structure by friction stir welding in the joint of nano-structured oxide dispersion strengthened ferritic steel and reduced activation martensitic steel, Scripta Materialia 105 (2015) 2-5.
[112] H.L. Yang, S. Kano, J. McGrady, J.J. Shen, Y.F. Li, D.Y. Chen, K. Murakami, H. Abe, Hardening behavior and deformation microstructure beneath indentation in heavy ion irradiated 12Cr-ODS steel at elevated temperature, Journal of Nuclear Materials 543 (2021).
[113] A. Sarkar, B. Breitung, H. Hahn, High entropy oxides: The role of entropy, enthalpy and synergy, Scripta Materialia 187 (2020) 43-48.
[114] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(7411) (2012) 294-303.
[115] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Yu, S. Ran, Solution combustion synthesis and magnetic property of rock-salt (Co0. 2Cu0. 2Mg0. 2Ni0. 2Zn0. 2) O high-entropy oxide nanocrystalline powder, Journal of Magnetism Magnetic Materials 484 (2019) 245-252.
[116] T. Xiong, S. Zheng, J. Pang, X. Ma, High-strength and high-ductility AlCoCrFeNi2. 1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure, Scripta Materialia 186 (2020) 336-340.
[117] J. Wang, D. Stenzel, R. Azmi, S. Najib, K. Wang, J. Jeong, A. Sarkar, Q. Wang, P.A. Sukkurji, T. Bergfeldt, Spinel to rock-salt transformation in high entropy oxides with Li incorporation, Electrochem 1(1) (2020) 60-74.
[118] S. Pan, J. Zhang, B. He, M. Huang, High strain gradient induced nanograin in a CoCrNiVC medium entropy alloy with lamellar carbide, Materials Science Engineering: A 852 (2022) 143692.
[119] X. Yang, Y. Xi, C. He, H. Chen, X. Zhang, S. Tu, Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation, Scripta Materialia 209 (2022) 114364.
[120] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Materialia 134 (2017) 33-36.
[121] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[122] E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews 61(3) (2016) 183-202.
[123] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
[124] E.J. Pickering, A.W. Carruthers, P.J. Barron, S.C. Middleburgh, D.E.J. Armstrong, A.S. Gandy, High-Entropy Alloys for Advanced Nuclear Applications, Entropy (Basel) 23(1) (2021).
[125] S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109(10) (2011) 103505.
[126] W. Huang, P. Martin, H.L. Zhuang, Machine-learning phase prediction of high-entropy alloys, Acta Mater. 169 (2019) 225-236.
[127] A. Roy, T. Babuska, B. Krick, G. Balasubramanian, Machine learned feature identification for predicting phase and Young's modulus of low-, medium- and high-entropy alloys, Scr. Mater. 185 (2020) 152-158.
[128] D. Zhao, S. Pan, Y. Zhang, P. Liaw, J. Qiao, Structure prediction in high-entropy alloys with machine learning, Appl. Phys. Lett. 118(23) (2021) 231904.
[129] K. Kaufmann, K.S. Vecchio, Searching for high entropy alloys: A machine learning approach, Acta Mater. 198 (2020) 178-222.
[130] J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, G. Balasubramanian, Materials informatics for the screening of multi-principal elements and high-entropy alloys, Nat. Commun. 10(1) (2019) 2618.
[131] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Machine learning assisted design of high entropy alloys with desired property, Acta Mater. 170 (2019) 109-117.
[132] Y. Sun, Z. Lu, X. Liu, Q. Du, H. Xie, J. Lv, R. Song, Y. Wu, H. Wang, S. Jiang, Prediction of Ti-Zr-Nb-Ta high-entropy alloys with desirable hardness by combining machine learning and experimental data, Appl. Phys. Lett. 119(20) (2021) 201905.
[133] G. Kim, H. Diao, C. Lee, A.T. Samaei, T. Phan, M. de Jong, K. An, D. Ma, P.K. Liaw, W. Chen, First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation, Acta Mater. 181 (2019) 124-138.
[134] U. Bhandari, M.R. Rafi, C. Zhang, S. Yang, Yield strength prediction of high-entropy alloys using machine learning, Materials Today Communications 26 (2021) 101871.
[135] G.L. Hart, T. Mueller, C. Toher, S. Curtarolo, Machine learning for alloys, Nature Reviews Materials 6(8) (2021) 730-755.
[136] J. Rickman, G. Balasubramanian, C. Marvel, H. Chan, M.-T. Burton, Machine learning strategies for high-entropy alloys, J. Appl. Phys. 128(22) (2020) 221101.
[137] A. Roy, G. Balasubramanian, Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys, Computational Materials Science 193 (2021) 110381.
[138] S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys. 120(16) (2016) 164902.
[139] E. Ma, X. Wu, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy, Nat. Commun. 10(1) (2019) 1-10.
[140] O. Senkov, D. Miracle, S. Rao, Correlations to improve room temperature ductility of refractory complex concentrated alloys, Mater. Sci. Eng. A 820 (2021) 141512.
[141] O.N. Senkov, G. Wilks, J. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[142] H. Yao, J. Qiao, J. Hawk, H. Zhou, M. Chen, M. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd. 696 (2017) 1139-1150.
[143] H. Yao, J. Qiao, M. Gao, J. Hawk, S. Ma, H. Zhou, Y. Zhang, NbTaV-(Ti, W) refractory high-entropy alloys: experiments and modeling, Mater. Sci. Eng. A 674 (2016) 203-211.
[144] H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, H. Zhou, MoNbTaV medium-entropy alloy, Entropy 18(5) (2016) 189.
[145] E. Fazakas, V. Zadorozhnyy, L. Varga, A. Inoue, D. Louzguine-Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X= V or Cr) refractory high-entropy alloys, International Journal of Refractory Metals and Hard Materials 47 (2014) 131-138.
[146] Z. An, S. Mao, Y. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, X. Han, A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion, Journal of Materials Science & Technology 79 (2021) 109-117.
[147] C.-M. Lin, C.-C. Juan, C.-H. Chang, C.-W. Tsai, J.-W. Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, J. Alloys Compd. 624 (2015) 100-107.
[148] S.-P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties, Materials Science and Engineering: C 73 (2017) 80-89.
[149] X. Yang, Y. Zhang, P. Liaw, Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, Procedia Engineering 36 (2012) 292-298.
[150] T. Li, J. Miao, Y. Lu, T. Wang, T. Li, Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys, International Journal of Refractory Metals and Hard Materials 103 (2022) 105762.
[151] S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, Y. Zhang, Microstructures and crackling noise of AlxNbTiMoV high entropy alloys, Entropy 16(2) (2014) 870-884.
[152] D.X. Qiao, H. Jiang, X.X. Chang, Y.P. Lu, T.J. Li, Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys, Mater. Sci. Forum, Trans Tech Publ, 2017, pp. 638-642.
[153] N. Guo, L. Wang, L. Luo, X. Li, R. Chen, Y. Su, J. Guo, H. Fu, Microstructure and mechanical properties of refractory high entropy (Mo0. 5NbHf0. 5ZrTi) BCC/M5Si3 in-situ compound, J. Alloys Compd. 660 (2016) 197-203.
[154] C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett. 175 (2016) 284-287.
[155] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76-83.
[156] N. Guo, L. Wang, L. Luo, X. Li, Y. Su, J. Guo, H. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Materials & Design 81 (2015) 87-94.
[157] S. Maiti, W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater. 106 (2016) 87-97.
[158] Y. Wu, Y. Cai, X. Chen, T. Wang, J. Si, L. Wang, Y. Wang, X. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Materials & Design 83 (2015) 651-660.
[159] Z. Han, H. Luan, X. Liu, N. Chen, X. Li, Y. Shao, K. Yao, Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Mater. Sci. Eng. A 712 (2018) 380-385.
[160] M. Wang, Z. Ma, Z. Xu, X. Cheng, Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys, J. Alloys Compd. 803 (2019) 778-785.
[161] Y.-M. Hu, X.-D. Liu, N.-N. Guo, L. Wang, Y.-Q. Su, J.-J. Guo, Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys, Rare Metals 38(9) (2019) 840-847.
[162] P. Barron, A. Carruthers, J. Fellowes, N. Jones, H. Dawson, E. Pickering, Towards V-based high-entropy alloys for nuclear fusion applications, Scr. Mater. 176 (2020) 12-16.
[163] A. Carruthers, B. Li, M. Rigby, L. Raquet, R. Mythili, C. Ghosh, A. Dasgupta, D. Armstrong, A. Gandy, E. Pickering, Novel reduced-activation TiVCrFe based high entropy alloys, J. Alloys Compd. 856 (2021) 157399.
[164] A. Carruthers, H. Shahmir, L. Hardwick, R. Goodall, A. Gandy, E. Pickering, An assessment of the high-entropy alloy system VCrMnFeAlx, J. Alloys Compd. 888 (2021) 161525.
[165] S. Shang, A. Saengdeejing, Z. Mei, D. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z. Liu, First-principles calculations of pure elements: Equations of state and elastic stiffness constants, Computational Materials Science 48(4) (2010) 813-826.
[166] S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45(367) (1954) 823-843.
[167] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier2012.
[168] T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, Jupyter Notebooks-a publishing format for reproducible computational workflows, 2016.
[169] S. Raschka, MLxtend: providing machine learning and data science utilities and extensions to Python's scientific computing stack, Journal of open source software 3(24) (2018) 638.
[170] R.J. Lewis, An introduction to classification and regression tree (CART) analysis, Annual meeting of the society for academic emergency medicine in San Francisco, California, Citeseer, 2000.
[171] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res. 33(19) (2018) 3092-3128.
[172] L. Qi, D. Chrzan, Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys, Phys. Rev. Lett. 112(11) (2014) 115503.
[173] G.M. de Bellefon, I. Robertson, T. Allen, J.-C. van Duysen, K. Sridharan, Radiation-resistant nanotwinned austenitic stainless steel, Scripta Materialia 159 (2019) 123-127.
[174] C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, Ferritic-martensitic steels for fission and fusion applications, Journal of Nuclear Materials 523 (2019) 510-537.
[175] F. Li, L. Guo, Y. Chen, Y. Long, Y. Wei, Z. Xie, H. Luo, W. Lin, Z. Zhou, H. Wang, Microstructure evolution and void swelling of ODS ferritic/martensitic steel under high damage irradiation, Materials Characterization 205 (2023) 113272.
[176] C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys, Nature communications 7(1) (2016) 13564.
[177] Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys, Nature communications 6(1) (2015) 8736.
[178] A. Ayyagari, R. Salloom, S. Muskeri, S. Mukherjee, Low activation high entropy alloys for next generation nuclear applications, Materialia 4 (2018) 99-103.
[179] C. Lu, Z. Lu, X. Wang, R. Xie, Z. Li, M. Higgins, C. Liu, F. Gao, L. Wang, Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation, Sci Rep 7 (2017) 40343.
[180] Y. Chen, Y. Li, X. Cheng, C. Wu, B. Cheng, Z. Xu, The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity, Materials 11(2) (2018) 208.
[181] Y. Wu, Y. Cai, T. Wang, J. Si, J. Zhu, Y. Wang, X. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Materials Letters 130 (2014) 277-280.
[182] Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys, Journal of Materials Science & Technology 34(2) (2018) 349-354.
[183] S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, Journal of Applied Physics 120(16) (2016).
[184] M. Sadeghilaridjani, A. Ayyagari, S. Muskeri, V. Hasannaeimi, R. Salloom, W.-Y. Chen, S. Mukherjee, Ion irradiation response and mechanical behavior of reduced activity high entropy alloy, Journal of Nuclear Materials 529 (2020) 151955.
[185] C. Lu, T. Yang, K. Jin, G. Velisa, P. Xiu, M. Song, Q. Peng, F. Gao, Y. Zhang, H. Bei, W.J. Weber, L. Wang, Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations, Materials Research Letters 6(10) (2018) 584-591.
[186] T.-n. Yang, C. Lu, G. Velisa, K. Jin, P. Xiu, Y. Zhang, H. Bei, L. Wang, Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd, Scripta Materialia 158 (2019) 57-61.
[187] X. Lv, S. Chen, Q. Wang, H. Jiang, L. Rong, Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel, Metals 12(9) (2022) 1421.
[188] S. Guo, C. Ng, J. Lu, C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of Applied Physics 109(10) (2011).
[189] D. Chen, Y. Tong, J. Wang, B. Han, Y.L. Zhao, F. He, J.J. Kai, Microstructural response of He+ irradiated FeCoNiCrTi0.2 high-entropy alloy, Journal of Nuclear Materials 510 (2018) 187-192.
[190] D. Chen, S. Zhao, J. Sun, P. Tai, Y. Sheng, G. Yeli, Y. Zhao, S. Liu, W. Lin, W. Kai, J.-J. Kai, Effects of minor alloying addition on He bubble formation in the irradiated FeCoNiCr-based high-entropy alloys, Journal of Nuclear Materials 542 (2020).
[191] B. Kombaiah, K. Jin, H. Bei, P.D. Edmondson, Y. Zhang, Phase stability of single phase Al0.12CrNiFeCo high entropy alloy upon irradiation, Materials & Design 160 (2018) 1208-1216.
[192] T. Yang, W. Guo, J.D. Poplawsky, D. Li, L. Wang, Y. Li, W. Hu, M.L. Crespillo, Z. Yan, Y. Zhang, Y. Wang, S.J. Zinkle, Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation, Acta Materialia 188 (2020) 1-15.
[193] Y. Zhang, X. Wang, Y.N. Osetsky, Y. Tong, R. Harrison, S.E. Donnelly, D. Chen, Y. Wang, H. Bei, B.C. Sales, Effects of 3d electron configurations on helium bubble formation and void swelling in concentrated solid-solution alloys, Acta Materialia 181 (2019) 519-529.
[194] H. Jiang, M. Wang, M.X. Huang, Crucial feature space for ductile bcc high-entropy alloys, Applied Physics Letters 121(16) (2022).
[195] H. Jiang, K. Yu, X. Liu, L. He, B. He, M. Huang, Crystallography of a new Mn (V, Ti, Al) 2O4 compositionally complex spinel oxide in a BCC compositionally complex alloy, Scripta Materialia 237 (2023) 115683.
[196] S.P. O’Brien, J. Christudasjustus, E. Delvecchio, N. Birbilis, R.K. Gupta, Microstructure and corrosion of CrFeMnV multi-principal element alloy, Corrosion Science 222 (2023) 111403.
[197] E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia 188 (2020) 435-474.
[198] P.J. Barron, A.W. Carruthers, J.W. Fellowes, N.G. Jones, H. Dawson, E.J. Pickering, Towards V-based high-entropy alloys for nuclear fusion applications, Scripta Materialia 176 (2020) 12-16.
[199] D. Kalita, I. Jóźwik, Y. Zhang, K. Mulewska, W. Chrominski, J. O'Connell, Y. Ge, W. Boldman, P. Rack, Y. Wang, The microstructure and He+ ion irradiation behavior of novel low-activation W-Ta-Cr-V refractory high entropy alloy for nuclear applications, Nuclear Materials and Energy 37 (2023) 101513.
[200] Z. Li, S. Ma, S. Zhao, W. Zhang, F. Peng, Q. Li, T. Yang, C.-Y. Wu, D. Wei, Y.-C. Chou, Achieving superb strength in single-phase FCC alloys via maximizing volume misfit, Materials Today 63 (2023) 108-119.
[201] A.W. Carruthers, B.S. Li, M. Rigby, L.C. Raquet, R. Mythili, C. Ghosh, A. Dasgupta, D.E.J. Armstrong, A.S. Gandy, E.J. Pickering, Novel reduced-activation TiVCrFe based high entropy alloys, Journal of Alloys and Compounds 856 (2021).
[202] A.W. Carruthers, H. Shahmir, L. Hardwick, R. Goodall, A.S. Gandy, E.J. Pickering, An assessment of the high-entropy alloy system VCrMnFeAlx, Journal of Alloys and Compounds 888 (2021).
[203] Y. Xiong, K. Wang, S. Zhao, Surface damage of refractory high entropy alloys subject to He irradiation, Journal of Nuclear Materials 595 (2024) 155060.
[204] M.a.-S. Duesbery, V. Vitek, Plastic anisotropy in bcc transition metals, Acta Materialia 46(5) (1998) 1481-1492.
[205] Y. Li, Q. Guan, B. He, Improving the strength and ductility of medium Mn steel by depleting the stress-assisted martensite, Scripta Materialia 226 (2023) 115267.
[206] B. He, M. Huang, Simultaneous increase of both strength and ductility of medium Mn transformation-induced plasticity steel by vanadium alloying, Metallurgical and Materials Transactions A 49 (2018) 1433-1438.
[207] L. Sun, Z. Xu, L. Peng, X. Lai, Grain-size-dependent ductile-to-brittle fracture mechanism of titanium sheets, Scripta Materialia 219 (2022) 114877.
[208] V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philosophical Magazine 18(154) (1968) 773-786.
[209] P. Hirsch, Y. Sun, On the stability of the three-fold symmetrically dissociated screw dislocation in the BCC lattice, Transactions of the Royal Society of South Africa 58(2) (2003) 129-134.
[210] L. Wang, C. Fu, Y. Wu, R. Li, Y. Wang, X. Hui, Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning, Materials Science Engineering: A 763 (2019) 138147.
[211] S. Chang, K.-K. Tseng, T.-Y. Yang, D.-S. Chao, J.-W. Yeh, J.-H. Liang, Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy, Materials Letters 272 (2020).
[212] D. Li, N. Jia, H. Huang, S. Chen, Y. Dou, X. He, W. Yang, Y. Xue, Z. Hua, F. Zhang, L. Wang, K. Jin, H. Cai, Helium ion irradiation enhanced precipitation and the impact on cavity formation in a HfNbZrTi refractory high entropy alloy, Journal of Nuclear Materials 552 (2021).
[213] V. Chaudhary, R. Chaudhary, R. Banerjee, R. Ramanujan, Accelerated and conventional development of magnetic high entropy alloys, Materials Today 49 (2021) 231-252.
[214] B.W. Brook, A. Alonso, D.A. Meneley, J. Misak, T. Blees, J.B. van Erp, Why nuclear energy is sustainable and has to be part of the energy mix, Sustainable Materials Technologies 1 (2014) 8-16.
[215] T. Abram, S. Ion, Generation-IV nuclear power: A review of the state of the science, Energy Policy 36(12) (2008) 4323-4330.
[216] M. Biesuz, J. Chen, M. Bortolotti, G. Speranza, V. Esposito, V.M. Sglavo, Ni-free high-entropy rock salt oxides with Li superionic conductivity, Journal of Materials Chemistry A 10(44) (2022) 23603-23616.
[217] B. Yue, W. Dai, X. Zhang, H. Zhang, W. Zhong, B. Liu, S. Kawaguchi, F. Hong, Deformation behavior of high-entropy oxide (Mg,Co,Ni,Cu,Zn)O under extreme compression, Scripta Materialia 219 (2022) 114879.
[218] T. Zhang, Z. Lv, Y. Cheng, X. Chen, G. Ji, Elastic and electronic properties of MnTi2O4 under pressure: A first-principle study, Computational materials science 84 (2014) 156-162.
[219] S. Marik, D. Singh, B. Gonano, F. Veillon, D. Pelloquin, Y. Bréard, Long range magnetic ordering and magneto-(di) electric effect in a new class of high entropy spinel oxide, Scripta Materialia 183 (2020) 107-110.
[220] L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Dell'Agli, A simple and effective predictor to design novel fluorite-structured High Entropy Oxides (HEOs), Acta Materialia 202 (2021) 181-189.
[221] S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T. Ouyang, Microstructure and dielectric properties of high entropy Ba (Zr0. 2Ti0. 2Sn0. 2Hf0. 2Me0. 2) O3 perovskite oxides, Ceramics International 46(6) (2020) 7430-7437.
[222] Z. Liu, S. Xu, T. Li, B. Xie, K. Guo, J. Lu, Microstructure and ferroelectric properties of high-entropy perovskite oxides with A-site disorder, Ceramics International 47(23) (2021) 33039-33046.
[223] S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides, Scripta Materialia 142 (2018) 116-120.
[224] D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong, K. Dong, Z. Wang, S. Luo, Y. Liu, X. Qi, Spinel-structured high entropy oxide (FeCoNiCrMn) 3O4 as anode towards superior lithium storage performance, Journal of Alloys Compounds 844 (2020) 156158.
[225] S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T.J.C.I. Ouyang, Microstructure and dielectric properties of high entropy Ba (Zr0. 2Ti0. 2Sn0. 2Hf0. 2Me0. 2) O3 perovskite oxides, 46(6) (2020) 7430-7437.
[226] Z. Grzesik, G. Smoła, M. Miszczak, M. Stygar, J. Dąbrowa, M. Zajusz, K. Świerczek, M. Danielewski, Defect structure and transport properties of (Co, Cr, Fe, Mn, Ni) 3O4 spinel-structured high entropy oxide, Journal of the European Ceramic Society 40(3) (2020) 835-839.
[227] A. Sarkar, B. Eggert, R. Witte, J. Lill, L. Velasco, Q. Wang, J. Sonar, K. Ollefs, S.S. Bhattacharya, R.A. Brand, Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0. 2Cr0. 2Fe0. 2Mn0. 2Ni0. 2) 3O4: Unraveling the suppression of configuration entropy in high entropy oxides, Acta Materialia 226 (2022) 117581.
[228] G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: Current status and future prospects, Energy Policy 61 (2013) 1503-1520.
[229] J. Llorca, C. Gonzalez, Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites, Journal of the Mechanics and Physics of Solids 46(1) (1998) 1-28.
[230] P. Ganguly, W.J. Poole, D.J. Lloyd, Deformation and fracture characteristics of AA6061-Al2O3 particle reinforced metal matrix composites at elevated temperatures, Scripta Materialia 44(7) (2001) 1099-1105.
[231] P.M. Cheng, G.J. Zhang, J.Y. Zhang, G. Liu, J. Sun, Coupling effect of intergranular and intragranular particles on ductile fracture of Mo-La2O3 alloys, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 640 (2015) 320-329.
[232] G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater. 12(4) (2013) 344-350.
[233] C.A. Williams, P. Unifantowicz, N. Baluc, G.D. Smith, E.A. Marquis, The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing, Acta Materialia 61(6) (2013) 2219-2235.
[234] M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Materialia 127 (2017) 165-177.
[235] P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, Journal of nuclear materials 444(1-3) (2014) 441-453.
[236] T. Stan, Y. Wu, J. Ciston, T. Yamamoto, G.R. Odette, Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy, Acta Materialia 183 (2020) 484-492.
[237] G. Spartacus, J. Malaplate, F. De Geuser, D. Sornin, A. Gangloff, R. Guillou, A. Deschamps, Nano-oxide precipitation kinetics during the consolidation process of a ferritic oxide dispersion strengthened steel, Scripta Materialia 188 (2020) 10-15.
[238] C.R. Massey, D.T. Hoelzer, K.A. Unocic, Y.N. Osetskiy, P.D. Edmondson, B. Gault, S.J. Zinkle, K.A. Terrani, Extensive nanoprecipitate morphology transformation in a nanostructured ferritic alloy due to extreme thermomechanical processing, Acta Materialia 200 (2020) 922-931.
[239] A. Impagnatiello, D. Hernandez-Maldonado, G. Bertali, E. Prestat, D. Kepaptsoglou, Q. Ramasse, S.J. Haigh, E. Jimenez-Melero, Atomically resolved chemical ordering at the nm-thick TiO precipitate/matrix interface in V-4Ti-4Cr alloy, Scripta Materialia 126 (2017) 50-54.
[240] A. Impagnatiello, S.M. Shubeita, P.T. Wady, I. Ipatova, H. Dawson, C. Barcellini, E. Jimenez-Melero, Monolayer-thick TiO precipitation in V-4Cr-4Ti alloy induced by proton irradiation, Scripta Materialia 130 (2017) 174-177.
[241] A. Impagnatiello, T. Toyama, E. Jimenez-Melero, Ti-rich precipitate evolution in vanadium-based alloys during annealing above 400 °C, Journal of Nuclear Materials 485 (2017) 122-128.
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828871
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
Jiang H. Design of novel BCC compositionally complex alloys based on low-activation elements[D]. 香港. 香港大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11950024-姜恒-机械与能源工程系(8539KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[姜恒]的文章
百度学术
百度学术中相似的文章
[姜恒]的文章
必应学术
必应学术中相似的文章
[姜恒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。