题名 | GaN-based Optoelectronic Devices for Liquid Properties Detection |
姓名 | |
姓名拼音 | LU Gaofei
|
学号 | 12068015
|
学位类型 | 博士
|
学位专业 | 应用物理
|
导师 | |
导师单位 | 深港微电子学院
|
论文答辩日期 | 2024-03-01
|
论文提交日期 | 2024-09-19
|
学位授予单位 | 香港理工大学
|
学位授予地点 | 中国香港
|
摘要 | Measurement of liquid properties holds significant research importance across fields such as environmental protection, the food industry, manufacturing processes, and so on. The investigation of liquid properties detecting is therefore deemed a top priority. The most commonly used liquid sensing methods, electrical and optical methods, offer their own advantages. However, electrical methods cannot guarantee measurement accuracy in electromagnetic environments, while optical methods are limited by the large size external light source. In order to develop compact liquid sensor, in this thesis, monolithically integrated GaN-based optoelectronic devices are adopted. These GaN devices integrate both light-emitting diode (LED) and photodetector (PD) on the same sapphire substrate, which simultaneously enables both light emission and light detection, enabling precise and portable optoelectronic sensing for liquid properties detection. First, the monolithically integrated GaN device is fabricated for droplet flow monitoring. When the droplet slides across the device, the reflectance at the sapphire boundary decreases due to reduced refractive index contrast, thereby decreasing the quantity of light reflected onto the PD. The integrated device provides a fast transient response with rise and fall times of 3.88 μs and 3.53 μs, achieving instantaneous droplet flow sensing. Then, a monolithically integrated optoelectronic device, equipped with an indicator film, is fabricated for enhanced pH detection. The pH sensor showcases a swift reaction time and an extensive linear range, achieving real-time pH detection with a minimal 1 μL sample and a response time of merely 3.8 s. The wide linear range of 5-13 pH of the sensor demonstrates its promise for practical applications. Finally, the GaN optoelectronic device is designed for organic liquid identification facilitated with photonic crystals. Meanwhile, the reflectance spectrum shift of photonic crystals in interaction with organic molecules is explored. The proposed optoelectronic device could identify 7 kinds of organic solvents in less than 30 s with reproducibility, which offers a viable solution for rapid response and decision-making in emergency situations such as chemical spills, replacing complicated laboratory analysis. |
关键词 | |
其他关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2020
|
学位授予年份 | 2024-09
|
参考文献列表 | [1] F. Roccaforte et al., "Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices," Microelectronic Engineering, vol. 187-188, pp. 66-77, 2018/02/05/ 2018, doi: 10.1016/j.mee.2017.11.021. [2] M. Abdel-Baki and F. El-Diasty, "Optical properties of oxide glasses containing transition metals: Case of titanium- and chromium-containing glasses," Current Opinion in Solid State and Materials Science, vol. 10, no. 5, pp. 217-229, 2006/10/01/ 2006, doi: 10.1016/j.cossms.2007.08.001. [3] J. W. Precker, "Simple experimental verification of the relation between the band-gap energy and the energy of photons emitted by LEDs," European Journal of Physics, vol. 28, no. 3, p. 493, 2007/03/23 2007, doi: 10.1088/0143-0807/28/3/010. [4] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, no. 12A, p. L2112, 1989/12/01 1989, doi: 10.1143/JJAP.28.L2112. [5] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994, doi: 10.1063/1.111832. [6] R. A. Yotter and D. M. Wilson, "A review of photodetectors for sensing light-emitting reporters in biological systems," IEEE Sensors Journal, vol. 3, no. 3, pp. 288-303, 2003, doi: 10.1109/JSEN.2003.814651. [7] E. V. Gorokhov, A. N. Magunov, V. S. Feshchenko, and A. A. Altukhov, "Solar-blind UV flame detector based on natural diamond," Instruments and Experimental Techniques, vol. 51, no. 2, pp. 280-283, 2008/03/01 2008, doi: 10.1134/S002044120802022X. [8] G. Chai, O. Lupan, L. Chow, and H. Heinrich, "Crossed zinc oxide nanorods for ultraviolet radiation detection," Sensors and Actuators A: Physical, vol. 150, no. 2, pp. 184-187, 2009/03/25/ 2009, doi: 10.1016/j.sna.2008.12.020. [9] R. Bogue, "Sensors for fire detection," Sensor Review, vol. 33, no. 2, pp. 99-103, 2013, doi: 10.1108/02602281311299635. [10] S. J. Young et al., "ZnO-based MIS photodetectors," Sensors and Actuators A: Physical, vol. 135, no. 2, pp. 529-533, 2007/04/15/ 2007, doi: 10.1016/j.sna.2006.10.001. [11] P.-C. Chang et al., "High UV/visible rejection contrast AlGaN/GaN MIS photodetectors," Thin Solid Films, vol. 498, no. 1, pp. 133-136, 2006/03/01/ 2006, doi: 10.1016/j.tsf.2005.07.094. [12] M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," Journal of Applied Physics, vol. 79, no. 10, pp. 7433-7473, 1996, doi: 10.1063/1.362677. [13] Q. Chen et al., "Schottky barrier detectors on GaN for visible–blind ultraviolet detection," Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, 1997, doi: 10.1063/1.118837. [14] A. Osinsky et al., "Low noise p-π-n GaN ultraviolet photodetectors," Applied Physics Letters, vol. 71, no. 16, pp. 2334-2336, 1997, doi: 10.1063/1.120023. [15] Z. Jiang et al., "Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication," Opt. Lett., vol. 39, no. 19, p. 5657, 2014. [16] Y. D. Jhou et al., "Nitride-based light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures," Solid-State Electronics, vol. 49, no. 8, pp. 1347-1351, 2005/08/01/ 2005, doi: 10.1016/j.sse.2005.06.002. [17] L. W. Ji, S. J. Young, C. H. Liu, W. Water, T. H. Meen, and W. Y. Jywe, "Nitride-based light-emitter and photodiode dual function devices with InGaN/GaN multiple quantum dot structures," Journal of Crystal Growth, vol. 310, no. 10, pp. 2476-2479, 2008/05/01/ 2008, doi: 10.1016/j.jcrysgro.2008.01.028. [18] K. H. Li, H. Lu, W. Y. Fu, Y. F. Cheung, and H. W. Choi, "Intensity-Stabilized LEDs With Monolithically Integrated Photodetectors," IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 7426-7432, 2019, doi: 10.1109/TIE.2018.2873522. [19] A. Mishra, A. Sudhakar, B. Jithender, and N. C, "AGRICULTURE & FOOD: e-Newsletter Volume 1 -Issue 7 - Applications of light emitting diodes for post-harvest quality management of fruits and vegetables," 07/01 2019. [20] R. W. Martin, P. G. Middleton, K. P. O’Donnell, and W. Van der Stricht, "Exciton localization and the Stokes’ shift in InGaN epilayers," Applied Physics Letters, vol. 74, no. 2, pp. 263-265, 1999, doi: 10.1063/1.123275. [21] K. H. Li et al., "InGaN RGB Light-Emitting Diodes With Monolithically Integrated Photodetectors for Stabilizing Color Chromaticity," IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 5154-5160, 2020, doi: 10.1109/TIE.2019.2926038. [22] Z. Shi, J. Yuan, S. Zhang, Y. Liu, and Y. Wang, "Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics," Optical Materials, vol. 72, pp. 20-24, 2017/10/01/ 2017, doi: 10.1016/j.optmat.2017.05.039. [23] J. W. Lee, B. U. Ye, Z. L. Wang, J.-L. Lee, and J. M. Baik, "Highly-sensitive and highly-correlative flexible motion sensors based on asymmetric piezotronic effect," Nano Energy, vol. 51, pp. 185-191, 2018/09/01/ 2018, doi: 10.1016/j.nanoen.2018.06.059. [24] Y. Peng et al., "Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect," Nano Energy, vol. 58, pp. 633-640, 2019/04/01/ 2019, doi: 10.1016/j.nanoen.2019.01.076. [25] Y. Peng et al., "Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse," Nano Energy, vol. 94, p. 106945, 2022/04/01/ 2022, doi: 10.1016/j.nanoen.2022.106945. [26] X. Gao et al., "Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system," Communications Engineering, vol. 1, no. 1, p. 16, 2022/07/07 2022, doi: 10.1038/s44172-022-00016-5. [27] F. M. Stürner et al., "Compact integrated magnetometer based on nitrogen-vacancy centres in diamond," Diamond and Related Materials, vol. 93, pp. 59-65, 2019/03/01/ 2019, doi: 10.1016/j.diamond.2019.01.008. [28] J. L. Webb et al., "Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor," Scientific Reports, vol. 11, no. 1, p. 2412, 2021/01/28 2021, doi: 10.1038/s41598-021-81828-x. [29] R. K. Joshi, J. E. Weber, Q. Hu, B. Johnson, J. W. Zimmer, and A. Kumar, "Carbon monoxide sensing at room temperature via electron donation in boron doped diamond films," Sensors and Actuators B: Chemical, vol. 145, no. 1, pp. 527-532, 2010/03/04/ 2010, doi: 10.1016/j.snb.2009.12.070. [30] C. Lu, Y. Li, S. Tian, W. Li, J. Li, and C. Gu, "Enhanced gas-sensing by diamond nanoneedle arrays formed by reactive ion etching," Microelectronic Engineering, vol. 88, no. 8, pp. 2319-2321, 2011/08/01/ 2011, doi: 10.1016/j.mee.2011.02.074. [31] K. O. Ho, Y. Shen, Y. Y. Pang, W. K. Leung, N. Zhao, and S. Yang, "Diamond quantum sensors: from physics to applications on condensed matter research," Functional Diamond, vol. 1, no. 1, pp. 160-173, 2021/01/02 2021, doi: 10.1080/26941112.2021.1964926. [32] B. S. Miller et al., "Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics," Nature, vol. 587, no. 7835, pp. 588-593, 2020/11/01 2020, doi: 10.1038/s41586-020-2917-1. [33] W. Liu et al., "Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry," Nano Letters, vol. 22, no. 7, pp. 2881-2888, 2022/04/13 2022, doi: 10.1021/acs.nanolett.2c00040. [34] Y. Hou et al., "A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities," Advanced Science, vol. 9, no. 17, p. 2200910, 2022/06/01 2022, doi: 10.1002/advs.202200910. [35] L. Chen, Y. P. Wu, and K. H. Li, "Monolithic InGaN/GaN photonic chips for heart pulse monitoring," Opt. Lett., vol. 45, no. 18, pp. 4992-4995, 2020/09/15 2020, doi: 10.1364/OL.400733. [36] J. Yan et al., "Reflection-type photoplethysmography pulse sensor based on an integrated optoelectronic chip with a ring structure," Biomed. Opt. Express, vol. 12, no. 10, pp. 6277-6283, 2021/10/01 2021, doi: 10.1364/BOE.437805. [37] J. Yin et al., "A Miniature GaN Chip for Surface Roughness Measurement," IEEE Transactions on Electron Devices, vol. 68, no. 10, pp. 4977-4981, 2021, doi: 10.1109/TED.2021.3105077. [38] J. Jing, X. An, Y. Luo, L. Chen, Z. Chu, and K. H. Li, "A Compact Optical Pressure Sensor Based on a III-Nitride Photonic Chip with Nanosphere-Embedded PDMS," ACS Applied Electronic Materials, vol. 3, no. 5, pp. 1982-1987, 2021/05/25 2021, doi: 10.1021/acsaelm.1c00130. [39] Y. Luo, X. An, L. Chen, and K. H. Li, "Chip-scale optical airflow sensor," Microsystems & Nanoengineering, vol. 8, no. 1, p. 4, 2022/01/04 2022, doi: 10.1038/s41378-021-00335-1. [40] L. Chen, X. An, J. Jing, H. Jin, Z. Chu, and K. H. Li, "Ultracompact Chip-Scale Refractometer Based on an InGaN-Based Monolithic Photonic Chip," ACS Applied Materials & Interfaces, vol. 12, no. 44, pp. 49748-49754, 2020/11/04 2020, doi: 10.1021/acsami.0c13144. [41] J. Chen, L. Chen, L. Zhu, X. Zhang, and K. H. Li, "Simultaneous Curing and Monitoring of Resin Using GaN Chips," IEEE Sensors Letters, vol. 6, no. 4, pp. 1-4, 2022, doi: 10.1109/LSENS.2022.3144998. [42] J. Chen, J. Yin, X. An, L. Chen, L. Zhu, and K. H. Li, "III-Nitride Microchips for Sugar Concentration Detection," IEEE Sensors Journal, vol. 22, no. 3, pp. 2078-2082, 2022, doi: 10.1109/JSEN.2021.3138746. [43] X. An, L. Chen, J. Li, Q. Wang, and K. H. Li, "Compact GaN-Based Photonic Chip for In Situ Real-Time Monitoring of Low Water Content in Ethanol," ACS Applied Electronic Materials, vol. 2, no. 11, pp. 3502-3507, 2020/11/24 2020, doi: 10.1021/acsaelm.0c00794. [44] X. An, H. Yang, Y. Luo, Z. Chu, and K. H. Li, "Ultrafast miniaturized GaN-based optoelectronic proximity sensor," Photon. Res., vol. 10, no. 8, pp. 1964-1970, 2022/08/01 2022, doi: 10.1364/PRJ.462933. [45] Y. Luo, B. Yu, L. Chen, and K. H. Li, "Micro Humidity Sensor Based on a GaN Chip With Silica Opal," IEEE Electron Device Letters, vol. 42, no. 5, pp. 743-746, 2021, doi: 10.1109/LED.2021.3070392. [46] X. An, Y. Luo, B. Yu, L. Chen, and K. H. Li, "A Chip-Scale GaN-Based Optical Pressure Sensor With Microdome-Patterned Polydimethylsiloxane (PDMS)," IEEE Electron Device Letters, vol. 42, no. 10, pp. 1532-1535, 2021, doi: 10.1109/LED.2021.3103891. [47] T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, "Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate," Opt. Express, vol. 15, no. 11, pp. 6670-6676, 2007/05/28 2007, doi: 10.1364/OE.15.006670. [48] P. Liu, C. She, L. Tan, P. Xu, and L. Yan, "Development of LED Package Heat Dissipation Research," Micromachines, vol. 13, no. 2, doi: 10.3390/mi13020229. [49] H. Wu, "Wire sawing technology: A state-of-the-art review," Precision Engineering, vol. 43, pp. 1-9, 2016/01/01/ 2016, doi: 10.1016/j.precisioneng.2015.08.008. [50] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, "Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire," Applied Physics Letters, vol. 81, no. 3, pp. 469-471, 2002, doi: 10.1063/1.1493220. [51] S. Jia et al., "A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection," Chemical Engineering Journal, vol. 410, p. 128418, 2021/04/15/ 2021, doi: 10.1016/j.cej.2021.128418. [52] J. A. Hernandez-Valdes, M. Stegge, J. Hermans, J. Teunis, and O. P. Kuipers, "Enhancement of amino acid production and secretion by Lactococcus lactis using a droplet-based biosensing and selection system," Metabolic Engineering Communications, vol. 11, p. e00133, 2020. [53] R. Panckow, L. Reinecke, M. Cuellar, and S. Maaß, "Photo-Optical In-Situ Measurement of Drop Size Distributions: Applications in Research and Industry," Oil & Gas Science and Technology, vol. 72, p. 14, 05/01 2017, doi: 10.2516/ogst/2017009. [54] K.-C. Liu et al., "A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection," Light: Science & Applications, vol. 5, no. 8, pp. e16136-e16136, 2016/08/01 2016, doi: 10.1038/lsa.2016.136. [55] D. Choi and D. S. Kim, "A Zeta (ζ)-Pipet Tip to Reduce the Spontaneously Induced Electrical Charge of a Dispensed Aqueous Droplet," Langmuir, vol. 30, p. 6644, 2014. [56] L. Alwis, T. Sun, and K. T. V. Grattan, "[INVITED] Developments in optical fibre sensors for industrial applications," Optics & Laser Technology, vol. 78, pp. 62-66, 2016/04/01/ 2016, doi: 10.1016/j.optlastec.2015.09.004. [57] J. Tröndle, A. Ernst, W. Streule, R. Zengerle, and P. Koltay, "Non-contact optical sensor to detect free flying droplets in the nanolitre range," Sensors and Actuators A: Physical, vol. 158, no. 2, pp. 254-262, 2010/03/01/ 2010, doi: 10.1016/j.sna.2010.01.023. [58] L. Liu, S. Korposh, D. Gomez, R. Correia, B. R. Hayes-Gill, and S. P. Morgan, "Localised plasmonic hybridisation mode optical fibre sensing of relative humidity," Sensors and Actuators B: Chemical, vol. 353, p. 131157, 2022/02/15/ 2022, doi: 10.1016/j.snb.2021.131157. [59] F. Canfarotta et al., "A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements," Biosensors and Bioelectronics, vol. 120, pp. 108-114, 2018/11/30/ 2018, doi: 10.1016/j.bios.2018.07.070. [60] O. Atalay, A. Atalay, J. Gafford, and C. Walsh, "A Highly Sensitive Capacitive-Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer," Advanced Materials Technologies, 10.1002/admt.201700237 vol. 3, no. 1, p. 1700237, 2018/01/01 2018, doi: 10.1002/admt.201700237. [61] M. H. Zulfiqar, M. Saleem, M. Zubair, M. Q. Mehmood, and K. Riaz, Foldable, Eco-Friendly and Low-Cost Microfluidic Paper-Based Capacitive Droplet Sensor. 2020. [62] C. Lu et al., "Investigation of the electroluminescence spectrum shift of InGaN/GaN multiple quantum well light-emitting diodes under direct and pulsed currents," Journal of Applied Physics, vol. 113, no. 1, p. 013102, 2013/01/07 2013, doi: 10.1063/1.4772683. [63] A. Behnood, K. Van Tittelboom, and N. De Belie, "Methods for measuring pH in concrete: A review," Construction and Building Materials, vol. 105, pp. 176-188, 2016/02/15/ 2016, doi: 10.1016/j.conbuildmat.2015.12.032. [64] M. Yuqing, C. Jianrong, and F. Keming, "New technology for the detection of pH," Journal of Biochemical and Biophysical Methods, vol. 63, no. 1, pp. 1-9, 2005/04/29/ 2005, doi: 10.1016/j.jbbm.2005.02.001. [65] J. Yang, T. J. Kwak, X. Zhang, R. McClain, W.-J. Chang, and S. Gunasekaran, "Digital pH Test Strips for In-Field pH Monitoring Using Iridium Oxide-Reduced Graphene Oxide Hybrid Thin Films," ACS Sensors, vol. 1, no. 10, pp. 1235-1243, 2016/10/28 2016, doi: 10.1021/acssensors.6b00385. [66] E. Ficara, A. Rozzi, and P. Cortelezzi, "Theory of pH-stat titration," Biotechnology and Bioengineering, vol. 82, no. 1, pp. 28-37, 2003/04/05 2003, doi: 10.1002/bit.10541. [67] K. Xu, B. Wu, J. Wan, Y. Li, and M. Li, "An All Solid State Electrochemical pH Sensor Based on Niobium Modified Electrode," IEEE Sensors Journal, vol. 21, no. 24, pp. 27275-27281, 2021, doi: 10.1109/JSEN.2021.3123633. [68] D. J. Graham, B. Jaselskis, and C. E. Moore, "Development of the Glass Electrode and the pH Response," Journal of Chemical Education, vol. 90, no. 3, pp. 345-351, 2013/03/12 2013, doi: 10.1021/ed300246x. [69] S. Ohkuma and B. Poole, "Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents," Proceedings of the National Academy of Sciences, vol. 75, no. 7, pp. 3327-3331, 1978/07/01 1978, doi: 10.1073/pnas.75.7.3327. [70] W. Tan, Z. Y. Shi, and R. Kopelman, "Development of submicron chemical fiber optic sensors," Analytical Chemistry, vol. 64, no. 23, pp. 2985-2990, 1992/12/01 1992, doi: 10.1021/ac00047a019. [71] M. García-Heras, C. Gil, N. Carmona, J. Faber, K. Kromka, and M. A. Villegas, "Optical behaviour of pH detectors based on sol–gel technology," Analytica Chimica Acta, vol. 540, no. 1, pp. 147-152, 2005/05/17/ 2005, doi: 10.1016/j.aca.2004.09.031. [72] J. Y. Ding, M. R. Shahriari, and G. H. Sigel, "Porous Fiber Optical Sensor For pH Measurement," in 8th Optical Fiber Sensors Conference, 29-31 Jan. 1992 1992, pp. 321-324, doi: 10.1109/OFS.1992.763098. [73] J. Zha and H. Roggendorf, "Sol–gel science, the physics and chemistry of sol–gel processing, Ed. by C. J. Brinker and G. W. Scherer, Academic Press, Boston 1990, xiv, 908 pp., bound—ISBN 0-12-134970-5," Advanced Materials, vol. 3, no. 10, pp. 522-522, 1991/10/01 1991, doi: 10.1002/adma.19910031025. [74] C.-Y. Li et al., "A wide pH range optical sensing system based on a sol–gel encapsulated amino-functionalised corrole," Analyst, 10.1039/B514510D vol. 131, no. 3, pp. 388-393, 2006, doi: 10.1039/B514510D. [75] K. Ertekin, C. Karapire, S. Alp, B. Yenigül, and S. Içli, "Photophysical and photochemical characteristics of an azlactone dye in sol-gel matrix; a new fluorescent pH indicator," Dyes and Pigments, vol. 56, no. 2, pp. 125-133, 2003/02/01/ 2003, doi: 10.1016/S0143-7208(02)00125-0. [76] M. Chen, S. G. J. Heijman, and L. C. Rietveld, "State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application," Membranes, vol. 11, no. 11, doi: 10.3390/membranes11110888. [77] L. L. Hench and J. K. West, "The sol-gel process," Chemical Reviews, vol. 90, no. 1, pp. 33-72, 1990/01/01 1990, doi: 10.1021/cr00099a003. [78] J. Konishi, K. Fujita, K. Nakanishi, and K. Hirao, "Monolithic TiO2 with Controlled Multiscale Porosity via a Template-Free Sol−Gel Process Accompanied by Phase Separation," Chemistry of Materials, vol. 18, no. 25, pp. 6069-6074, 2006/12/01 2006, doi: 10.1021/cm0617485. [79] G. W. Scherer, "Aging and drying of gels," Journal of Non-Crystalline Solids, vol. 100, no. 1, pp. 77-92, 1988/03/01/ 1988, doi: 10.1016/0022-3093(88)90008-7. [80] C. M. Chan, G. Z. Cao, H. Fong, M. Sarikaya, T. Robinson, and L. Nelson, "Nanoindentation and adhesion of sol-gel-derived hard coatings on polyester," Journal of Materials Research, vol. 15, no. 1, pp. 148-154, 2000/01/01 2000, doi: 10.1557/JMR.2000.0025. [81] F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, "Silica-Based Mesoporous Organic–Inorganic Hybrid Materials," Angewandte Chemie International Edition, vol. 45, no. 20, pp. 3216-3251, 2006/05/12 2006, doi: 10.1002/anie.200503075. [82] J. Šefčik and A. V. McCormick, "Kinetic and thermodynamic issues in the early stages of sol-gel processes using silicon alkoxides," Catalysis Today, vol. 35, no. 3, pp. 205-223, 1997/03/28/ 1997, doi: 10.1016/S0920-5861(96)00158-7. [83] R. Jae Chul and J. C. In, "Structures and properties of silica gels prepared by the sol—gel method," Journal of Non-Crystalline Solids, vol. 130, no. 1, pp. 8-17, 1991/06/01/ 1991, doi: 10.1016/0022-3093(91)90151-U. [84] F. Rubio, J. Rubio, and J. L. Oteo, "A FT-IR Study of the Hydrolysis of Tetraethylorthosilicate (TEOS)," Spectroscopy Letters, vol. 31, no. 1, pp. 199-219, 1998/01/01 1998, doi: 10.1080/00387019808006772. [85] R. Mukkamala and H. M. Cheung, "Acid and base effects on the morphology of composites formed from microemulsion polymerization and sol–gel processing," Journal of Materials Science, vol. 32, no. 17, pp. 4687-4692, 1997/09/01 1997, doi: 10.1023/A:1018610426210. [86] F. B. M. Suah, M. Ahmad, and M. N. Taib, "Applications of artificial neural network on signal processing of optical fibre pH sensor based on bromophenol blue doped with sol–gel film," Sensors and Actuators B: Chemical, vol. 90, no. 1, pp. 182-188, 2003/04/20/ 2003, doi: 10.1016/S0925-4005(03)00026-1. [87] A. Bhat, J. M. Amanor-Boadu, and A. Guiseppi-Elie, "Toward Impedimetric Measurement of Acidosis with a pH-Responsive Hydrogel Sensor," ACS Sensors, vol. 5, no. 2, pp. 500-509, 2020/02/28 2020, doi: 10.1021/acssensors.9b02336. [88] Y. Ko, H. Y. Jeong, G. Kwon, D. Kim, C. Lee, and J. You, "pH-responsive polyaniline/polyethylene glycol composite arrays for colorimetric sensor application," Sensors and Actuators B: Chemical, vol. 305, p. 127447, 2020/02/15/ 2020, doi: 10.1016/j.snb.2019.127447. [89] L. Ding et al., "A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging," Carbohydrate Polymers, vol. 233, p. 115859, 2020/04/01/ 2020, doi: 10.1016/j.carbpol.2020.115859. [90] J. J. García-Guzmán, C. Pérez-Ràfols, M. Cuartero, and G. A. Crespo, "Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode," ACS Sensors, vol. 6, no. 3, pp. 1129-1137, 2021/03/26 2021, doi: 10.1021/acssensors.0c02397. [91] T. Siripongpreda, B. Somchob, N. Rodthongkum, and V. P. Hoven, "Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose," Carbohydrate Polymers, vol. 256, p. 117506, 2021/03/15/ 2021, doi: 10.1016/j.carbpol.2020.117506. [92] S. NajafiKhoshnoo et al., "A 3D Nanomaterials-Printed Wearable, Battery-Free, Biocompatible, Flexible, and Wireless pH Sensor System for Real-Time Health Monitoring," Advanced Materials Technologies, vol. 8, no. 8, p. 2201655, 2023/04/01 2023, doi: 10.1002/admt.202201655. [93] M. Khatib and H. Haick, "Sensors for Volatile Organic Compounds," ACS Nano, vol. 16, no. 5, pp. 7080-7115, 2022/05/24 2022, doi: 10.1021/acsnano.1c10827. [94] A. G. Fung et al., "Wearable Environmental Monitor To Quantify Personal Ambient Volatile Organic Compound Exposures," ACS Sensors, vol. 4, no. 5, pp. 1358-1364, 2019/05/24 2019, doi: 10.1021/acssensors.9b00304. [95] X. Chen et al., "Portable Analytical Techniques for Monitoring Volatile Organic Chemicals in Biomanufacturing Processes: Recent Advances and Limitations," Frontiers in Chemistry, Mini Review vol. 8, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fchem.2020.00837. [96] W. A. Byers and S. P. Perone, "Generation of an electrochemical data base for pattern recognition," Analytical Chemistry, vol. 55, no. 4, pp. 615-620, 1983/04/01 1983, doi: 10.1021/ac00255a008. [97] Z. Li et al., "Multiplexed Analysis of Photochemical Oxidants Using a Nanoparticle-Based Optoelectronic Nose," Analytical Chemistry, vol. 93, no. 41, pp. 13990-13997, 2021/10/19 2021, doi: 10.1021/acs.analchem.1c03457. [98] Z. Xie et al., "An Optical Nose Chip Based on Mesoporous Colloidal Photonic Crystal Beads," Advanced Materials, vol. 26, no. 15, pp. 2413-2418, 2014/04/01 2014, doi: 10.1002/adma.201304775. [99] Z. Li, J. R. Askim, and K. S. Suslick, "The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays," Chemical Reviews, vol. 119, no. 1, pp. 231-292, 2019/01/09 2019, doi: 10.1021/acs.chemrev.8b00226. [100] J. Hou, M. Li, and Y. Song, "Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods," Nano Today, vol. 22, pp. 132-144, 2018/10/01/ 2018, doi: 10.1016/j.nantod.2018.08.008. [101] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals," Solid State Communications, vol. 102, no. 2, pp. 165-173, 1997/04/01/ 1997, doi: 10.1016/S0038-1098(96)00716-8. [102] C. Huang, Y. Cheng, Z. Gao, H. Zhang, and J. Wei, "Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring," Sensors and Actuators B: Chemical, vol. 273, pp. 1705-1712, 2018/11/10/ 2018, doi: 10.1016/j.snb.2018.07.050. [103] H. Fudouzi, "Fabricating high-quality opal films with uniform structure over a large area," Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 277-283, 2004/07/01/ 2004, doi: 10.1016/j.jcis.2004.01.054. [104] C. Fenzl, T. Hirsch, and O. S. Wolfbeis, "Photonic Crystals for Chemical Sensing and Biosensing," Angewandte Chemie International Edition, vol. 53, no. 13, pp. 3318-3335, 2014/03/24 2014, doi: 10.1002/anie.201307828. [105] Y. J. Lee and P. V. Braun, "Tunable Inverse Opal Hydrogel pH Sensors," Advanced Materials, vol. 15, no. 7-8, pp. 563-566, 2003/04/17 2003, doi: 10.1002/adma.200304588. [106] A. K. Yetisen, I. Naydenova, F. da Cruz Vasconcellos, J. Blyth, and C. R. Lowe, "Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications," Chemical Reviews, vol. 114, no. 20, pp. 10654-10696, 2014/10/22 2014, doi: 10.1021/cr500116a. [107] H. Fudouzi and Y. Xia, "Photonic Papers and Inks: Color Writing with Colorless Materials," Advanced Materials, vol. 15, no. 11, pp. 892-896, 2003/06/05 2003, doi: 10.1002/adma.200304795. [108] H. Zhang, L. Lin, D. Liu, Q. Chen, and J. Wu, "Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids," Analytica Chimica Acta, vol. 953, pp. 71-78, 2017/02/08/ 2017, doi: 10.1016/j.aca.2016.11.053. [109] C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, "Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors," Journal of Materials Chemistry C, 10.1039/C5TC01927C vol. 3, no. 39, pp. 10091-10098, 2015, doi: 10.1039/C5TC01927C. [110] C. K. Yeom, H. K. Kim, and J. W. Rhim, "Removal of trace VOCs from water through PDMS membranes and analysis of their permeation behaviors," Journal of Applied Polymer Science, vol. 73, no. 4, pp. 601-611, 1999/07/25 1999, doi: 10.1002/(SICI)1097-4628(19990725)73:4<601::AID-APP16>3.0.CO;2-#. [111] R. Kanawade et al., "Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing," Opt. Express, vol. 27, no. 5, pp. 7277-7290, 2019/03/04 2019, doi: 10.1364/OE.27.007277. [112] R. Zhang et al., "Metal–Organic Framework Crystal-Assembled Optical Sensors for Chemical Vapors: Effects of Crystal Sizes and Missing-Linker Defects on Sensing Performances," ACS Applied Materials & Interfaces, vol. 11, no. 23, pp. 21010-21017, 2019/06/12 2019, doi: 10.1021/acsami.9b05933. [113] J. F. Olorunyomi et al., "Advancing Metal-Organic Frameworks toward Smart Sensing: Enhanced Fluorescence by a Photonic Metal-Organic Framework for Organic Vapor Sensing," Advanced Optical Materials, vol. 8, no. 19, p. 2000961, 2020/10/01 2020, doi: 10.1002/adom.202000961. [114] D. Yan et al., "Flexible construction of cellulose photonic crystal optical sensing nano-materials detecting organic solvents," Analyst, 10.1039/C8AN01236A vol. 144, no. 6, pp. 1892-1897, 2019, doi: 10.1039/C8AN01236A. [115] C. Li, L. Li, S. Yu, X. Jiao, and D. Chen, "High Performance Hollow Metal–Organic Framework Nanoshell-Based Etalons for Volatile Organic Compounds Detection," Advanced Materials Technologies, vol. 1, no. 7, p. 1600127, 2016/10/01 2016, doi: 10.1002/admt.201600127. [116] S. Yu, X. Wang, X. Jiao, C. Li, and D. Chen, "Polyhedral metal–organic framework monolayer colloidal crystals with sharpened and crystal facet-dependent selectivity for organic vapor sensing," Journal of Materials Chemistry C, 10.1039/D1TC00810B vol. 9, no. 16, pp. 5379-5386, 2021, doi: 10.1039/D1TC00810B. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/828872 |
专题 | 南方科技大学-香港科技大学深港微电子学院筹建办公室 |
推荐引用方式 GB/T 7714 |
Lu GF. GaN-based Optoelectronic Devices for Liquid Properties Detection[D]. 中国香港. 香港理工大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12068015-卢高飞-南方科技大学-(6029KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[卢高飞]的文章 |
百度学术 |
百度学术中相似的文章 |
[卢高飞]的文章 |
必应学术 |
必应学术中相似的文章 |
[卢高飞]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论