中文版 | English
题名

Predicting Colloidal Interaction Parameters from Small-Angle X-ray Scattering Curves Using Artificial Neural Networks and Markov Chain Monte Carlo Sampling

作者
通讯作者Guldin, Stefan; Butler, Keith T.
发表日期
2024-09-01
DOI
发表期刊
EISSN
2691-3704
摘要
Small-angle X-ray scattering (SAXS) is a characterization technique that allows for the study of colloidal interactions by fitting the structure factor of the SAXS profile with a selected model and closure relation. However, the applicability of this approach is constrained by the limited number of existing models that can be fitted analytically, as well as the narrow operating range for which the models are valid. In this work, we demonstrate a proof of concept for using an artificial neural network (ANN) trained on SAXS curves obtained from Monte Carlo (MC) simulations to predict values of the effective macroion valency (Z(eff)) and the Debye length (kappa(-1)) for a given SAXS profile. This ANN, which was trained on 200,000 simulated SAXS curves, was able to predict values of Z(eff) and kappa(-1) for a test set containing 25,000 simulated SAXS curves, where most predicted values had errors smaller than 20%. Subsequently, an ANN was used as a surrogate model in a Markov chain Monte Carlo sampling algorithm to obtain maximum a posteriori estimates of Z(eff) and kappa(-1), as well as the associated confidence intervals and correlations between Z(eff) and kappa(-1) for an experimentally obtained SAXS profile.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Engineering and Physical Sciences Research Council["EP/R513143/1","EP/W524335/1","EP/Y000552/1","EP/Y014405/1"] ; NSF[DMR-0520547] ; European Union's Horizon 2020 research and innovation programme under the SINE2020 Project[654000] ; EPSRC[EP/X035859/1]
WOS研究方向
Chemistry
WOS类目
Chemistry, Multidisciplinary
WOS记录号
WOS:001309475000001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828892
专题工学院_生物医学工程系
作者单位
1.UCL, Dept Chem Engn, London WC1E 7JE, England
2.Univ Cambridge, Ctr Misfolding Dis, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
3.Langmu Bio, Yuhang 311112, Hangzhou, Peoples R China
4.Southern Univ Sci & Technol, Dept Biomed Engn, Guangdong Prov Key Lab Adv Biomat, Shenzhen 518055, Peoples R China
5.UCL, Dept Chem, London WC1E 6BS, England
6.Tech Univ Munich, Dept Life Sci Engn, D-85354 Freising Weihenstephan, Germany
7.TUMCREATE, Singapore 138602, Singapore
推荐引用方式
GB/T 7714
Wong, Kelvin,Qi, Runzhang,Yang, Ye,et al. Predicting Colloidal Interaction Parameters from Small-Angle X-ray Scattering Curves Using Artificial Neural Networks and Markov Chain Monte Carlo Sampling[J]. JACS AU,2024.
APA
Wong, Kelvin,Qi, Runzhang,Yang, Ye,Luo, Zhi,Guldin, Stefan,&Butler, Keith T..(2024).Predicting Colloidal Interaction Parameters from Small-Angle X-ray Scattering Curves Using Artificial Neural Networks and Markov Chain Monte Carlo Sampling.JACS AU.
MLA
Wong, Kelvin,et al."Predicting Colloidal Interaction Parameters from Small-Angle X-ray Scattering Curves Using Artificial Neural Networks and Markov Chain Monte Carlo Sampling".JACS AU (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wong, Kelvin]的文章
[Qi, Runzhang]的文章
[Yang, Ye]的文章
百度学术
百度学术中相似的文章
[Wong, Kelvin]的文章
[Qi, Runzhang]的文章
[Yang, Ye]的文章
必应学术
必应学术中相似的文章
[Wong, Kelvin]的文章
[Qi, Runzhang]的文章
[Yang, Ye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。