中文版 | English
题名

DMLoc: Automatic Microseismic Locating Workflow Based on Deep Learning and Waveform Migration

作者
通讯作者Zheng, Jing
发表日期
2024-09-01
DOI
发表期刊
ISSN
0895-0695
EISSN
1938-2057
卷号95期号:5
摘要
During hydraulic fracturing, real-time acquisition of the spatiotemporal distribution of microseismic in the reservoir is essential in evaluating the risk of induced seismicity and optimizing injection parameters. By integrating deep learning with migration-based location methods, we develop an automatic microseismic locating workflow (named DMLoc). DMLoc applies deep learning to automate phase picking and leverage the phase arrival probability function generated by a convolutional network as the input for waveform migration. The proposed workflow is first applied to the continuous data of the Dawson-Septimus area. Compared with a reference catalog generated by the SeisComP3 software, our method automatically locates 57 additional seismic events (accounting for 43% of the events in the obtained catalog). We further evaluate the performance of DMLoc by applying it to a 35-day continuous microseismic dataset from the Tony Creek Dual Microseismic Experiment. The spatiotemporal distribution of our detected events is consistent with results reported in prior catalogs, demonstrating the effectiveness of our method. In contrast to using raw microseismic records for stacking, DMLoc addresses the issue of inaccurate locating caused by low signal-to-noise ratios and polarity changes. The use of GPUs has substantially accelerated the calculations and enabled DMLoc to output locating results in minutes. This fast and efficient metric could be easily extended to any microseismic monitoring scenario that requires (near) real-time locations and assists in site-based risk mitigation and industrial operation optimization.
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["42374068","42272204"] ; The 111 Project[B18052] ; Leading talents of the Guangdong Province program[2021QN02G113]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001309126600001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828921
专题理学院_地球与空间科学系
作者单位
1.China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing, Peoples R China
2.China Univ Min & Technol Beijing, State Key Lab Fine Explorat & Intelligent Dev Coal, Beijing, Peoples R China
3.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yizhuo,Zheng, Jing,Wang, Ruijia,et al. DMLoc: Automatic Microseismic Locating Workflow Based on Deep Learning and Waveform Migration[J]. SEISMOLOGICAL RESEARCH LETTERS,2024,95(5).
APA
Liu, Yizhuo,Zheng, Jing,Wang, Ruijia,Peng, Suping,&Shen, Shuaishuai.(2024).DMLoc: Automatic Microseismic Locating Workflow Based on Deep Learning and Waveform Migration.SEISMOLOGICAL RESEARCH LETTERS,95(5).
MLA
Liu, Yizhuo,et al."DMLoc: Automatic Microseismic Locating Workflow Based on Deep Learning and Waveform Migration".SEISMOLOGICAL RESEARCH LETTERS 95.5(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Yizhuo]的文章
[Zheng, Jing]的文章
[Wang, Ruijia]的文章
百度学术
百度学术中相似的文章
[Liu, Yizhuo]的文章
[Zheng, Jing]的文章
[Wang, Ruijia]的文章
必应学术
必应学术中相似的文章
[Liu, Yizhuo]的文章
[Zheng, Jing]的文章
[Wang, Ruijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。