中文版 | English
题名

RedTE: Mitigating Subsecond Traffic Bursts with Real-time and Distributed Traffic Engineering

作者
通讯作者Li, Dan
DOI
发表日期
2024-08-04
会议名称
2024 ACM SIGCOMM Conference, ACM SIGCOMM 2024
ISBN
9798400706141
会议录名称
页码
71-85
会议日期
August 4, 2024 - August 8, 2024
会议地点
Sydney, NSW, Australia
会议录编者/会议主办者
ACM SIGCOMM
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Internet traffic bursts usually happen within a second, thus conventional burst mitigation methods ignore the potential of Traffic Engineering (TE). However, our experiments indicate that a TE system, with a sub-second control loop latency, can effectively alleviate burst-induced congestion. TE-based methods can leverage network-wide tunnel-level information to make globally informed decisions (e.g., balancing traffic bursts among multiple paths). Our insight in reducing control loop latency is to let each router make local TE decisions, but this introduces the key challenge of minimizing performance loss compared to centralized TE systems.In this paper, we present RedTE, a novel distributed TE system with a control loop latency of < 100ms, while achieving performance comparable to centralized TE systems. RedTE's innovation is the modeling of TE as a distributed cooperative multi-agent problem, and we design a novel multi-agent deep reinforcement learning algorithm to solve it, which enables each agent to make globally informed decisions solely based on local information. We implement real RedTE routers and deploy them on a WAN spanning six city datacenters. Evaluation reveals notable improvements compared to existing solutions: < 100ms of control loop latency, a 37.4% reduction in maximum link utilization, and a 78.9% reduction in average queue length.
© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
We thank our shepherd Dr. Michael Schapira and the anonymous SIGCOMM reviewers for their constructive comments. Prof. Dan Li is the corresponding author. This work was supported by the National Key R&D Program of China under Grant 2019YFB1802600, the National Natural Science Foundation of China under Grant U23B2001.
WOS研究方向
Computer Science ; Telecommunications
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Telecommunications
WOS记录号
WOS:001294403100005
EI入藏号
20243516956516
EI主题词
Behavioral research ; Closed loop control systems ; Deep learning ; Reinforcement learning ; Traffic congestion
EI分类号
:101.5 ; :1101.2 ; :1101.2.1 ; Cargo Highway Transportation:432.3 ; Passenger Railroad Transportation:433.2 ; :435.1.1 ; Control Systems:731.1 ; Systems Science:961 ; Social Sciences:971
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/832765
专题未来网络研究院
南方科技大学
作者单位
1.Tsinghua University, China
2.Zhongguancun Laboratory, China
3.BNRist, China
4.Guangdong Communications and Networks Institute, China
5.Institute of Future Networks, Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Gui, Fei,Wang, Songtao,Li, Dan,et al. RedTE: Mitigating Subsecond Traffic Bursts with Real-time and Distributed Traffic Engineering[C]//ACM SIGCOMM. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2024:71-85.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gui, Fei]的文章
[Wang, Songtao]的文章
[Li, Dan]的文章
百度学术
百度学术中相似的文章
[Gui, Fei]的文章
[Wang, Songtao]的文章
[Li, Dan]的文章
必应学术
必应学术中相似的文章
[Gui, Fei]的文章
[Wang, Songtao]的文章
[Li, Dan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。