中文版 | English
题名

A Joint Approach to Local Updating and Gradient Compression for Efficient Asynchronous Federated Learning

作者
通讯作者Wang, Zhi
DOI
发表日期
2024
会议名称
30th International Conference on Parallel and Distributed Computing, Euro-Par 2024
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031695827
会议录名称
卷号
14803 LNCS
页码
196-211
会议日期
August 26, 2024 - August 30, 2024
会议地点
Madrid, Spain
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Asynchronous Federated Learning (AFL) confronts inherent challenges arising from the heterogeneity of devices (e.g., their computation capacities) and low-bandwidth environments, both potentially causing stale model updates (e.g., local gradients) for global aggregation. Traditional approaches mitigating the staleness of updates typically focus on either adjusting the local updating or gradient compression, but not both. Recognizing this gap, we introduce a novel approach that synergizes local updating with gradient compression. Our research begins by examining the interplay between local updating frequency and gradient compression rate, and their collective impact on convergence speed. The theoretical upper bound shows that the local updating frequency and gradient compression rate of each device are jointly determined by its computing power, communication capabilities and other factors. Building on this foundation, we propose an AFL framework called FedLuck that adaptively optimizes both local update frequency and gradient compression rates. Experiments on image classification and speech recognization show that FedLuck reduces communication consumption by 56% and training time by 55% on average, achieving competitive performance in heterogeneous and low-bandwidth scenarios compared to the baselines.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
This work is supported in part by the National Key Research and Development Project of China (Grant No. 2023YFF0905502), Shenzhen Science and Technology Program (Grant No. JCYJ20220818101014030).
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001308371400014
EI入藏号
20243616985656
EI主题词
Bandwidth ; Bandwidth compression ; Image compression
EI分类号
:1101.2 ; :1106.3.1 ; Information Theory and Signal Processing:716.1
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/832787
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.SIGS & TBSI, Tsinghua University, Shenzhen, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Song, Jiajun,Luo, Jiajun,Lu, Rongwei,et al. A Joint Approach to Local Updating and Gradient Compression for Efficient Asynchronous Federated Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2024:196-211.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Jiajun]的文章
[Luo, Jiajun]的文章
[Lu, Rongwei]的文章
百度学术
百度学术中相似的文章
[Song, Jiajun]的文章
[Luo, Jiajun]的文章
[Lu, Rongwei]的文章
必应学术
必应学术中相似的文章
[Song, Jiajun]的文章
[Luo, Jiajun]的文章
[Lu, Rongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。