中文版 | English
题名

A high-order generalised differential quadrature element method for simulating 2D and 3D incompressible flows on unstructured meshes

作者
通讯作者Shu, Chang; Yu, Peng
发表日期
2024-11-15
DOI
发表期刊
ISSN
0898-1221
卷号174页码:230-247
摘要
In this paper, a high-order generalised differential quadrature element method (GDQE) is proposed to simulate two-dimensional (2D) and three-dimensional (3D) incompressible flows on unstructured meshes. In this method, the computational domain is decomposed into unstructured elements. In each element, the high-order generalised differential quadrature (GDQ) discretisation is applied. Specifically, the GDQ method is utilised to approximate the partial derivatives of flow variables and fluxes with high-order accuracy inside each element. At the shared interfaces between different GDQ elements, the common flux is computed to account for the information exchange, which is achieved by the lattice Boltzmann flux solver (LBFS) in the present work. Since the solution in each GDQ element solely relies on information from itself and its direct neighbouring element, the developed method is authentically compact, and it is naturally suitable for parallel computing. Furthermore, by selecting the order of elemental GDQ discretisation, arbitrary accuracy orders can be achieved with ease. Representative incompressible flow problems, including 2D laminar flows as well as 3D turbulent simulations, are considered to evaluate the accuracy, efficiency, and robustness of the present method. Successful numerical simulations, especially for scale-resolving 3D turbulent flow problems, confirm that the present method is efficient and high-order accurate.
© 2024 Elsevier Ltd
收录类别
语种
英语
学校署名
通讯
资助项目
The author Peng Yu would like to thank the financial support from the National Natural Science Foundation of China (NSFC Grant No. 12172163) and the National Science and Technology Major Project (Grant Nos. J2019-II-0006-0026 and J2019-II-0013-0033).
出版者
EI入藏号
20243717018196
EI主题词
Computational fluid dynamics ; Incompressible flow ; Laminar flow ; Turbulent flow
EI分类号
:1106.5 ; :1201.8 ; :301.1 ; :301.1.4 ; :301.2
来源库
EV Compendex
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/832811
专题工学院_力学与航空航天工程系
南方科技大学
作者单位
1.Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore; 119260, Singapore
2.Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen; Guangdong; 518055, China
3.Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen; Guangdong; 518055, China
4.Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen; Guangdong; 518055, China
5.Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore; 138602, Singapore
第一作者单位南方科技大学;  力学与航空航天工程系
通讯作者单位南方科技大学;  力学与航空航天工程系
推荐引用方式
GB/T 7714
Liu, Yaguang,Shu, Chang,Yu, Peng,et al. A high-order generalised differential quadrature element method for simulating 2D and 3D incompressible flows on unstructured meshes[J]. Computers and Mathematics with Applications,2024,174:230-247.
APA
Liu, Yaguang,Shu, Chang,Yu, Peng,Liu, Yangyang,Zhang, Hua,&Lu, Chun.(2024).A high-order generalised differential quadrature element method for simulating 2D and 3D incompressible flows on unstructured meshes.Computers and Mathematics with Applications,174,230-247.
MLA
Liu, Yaguang,et al."A high-order generalised differential quadrature element method for simulating 2D and 3D incompressible flows on unstructured meshes".Computers and Mathematics with Applications 174(2024):230-247.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Yaguang]的文章
[Shu, Chang]的文章
[Yu, Peng]的文章
百度学术
百度学术中相似的文章
[Liu, Yaguang]的文章
[Shu, Chang]的文章
[Yu, Peng]的文章
必应学术
必应学术中相似的文章
[Liu, Yaguang]的文章
[Shu, Chang]的文章
[Yu, Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。