中文版 | English
题名

Robust Inference for Censored Quantile Regression

作者
通讯作者Lin, Hongmei
发表日期
2024
DOI
发表期刊
ISSN
1009-6124
EISSN
1559-7067
摘要
In various fields such as medical science and finance, it is not uncommon that the data are heavy-tailed and/or not fully observed, calling for robust inference methods that can deal with the outliers and incompleteness efficiently. In this paper, the authors propose a rank score test for quantile regression with fixed censored responses, based on the standard quantile regression in an informative subset which is computationally efficient and robust. The authors further select the informative subset by the multiply robust propensity scores, and then derive the asymptotic properties of the proposed test statistic under both the null and local alternatives. Moreover, the authors conduct extensive simulations to verify the validity of the proposed test, and apply it to a human immunodeficiency virus data set to identify the important predictors for the conditional quantiles of the censored viral load.
© The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.
收录类别
语种
英语
学校署名
其他
资助项目
This research was supported by the National Natural Science Foundation of China under Grant Nos. 12171310 and 12371272, the Shanghai \u201CProject Dawn 2022\u201D under Grant No. 22SG52, and the Basic Research Project of Shanghai Science and Technology Commission under Grant No. 22JC1400800. the National Natural Science Foundation of China under Grant No. 12371265, the Shanghai National Foundation of Science under Grant No. 21ZR1420700, and the Fundamental Research Funds for the Central Universities under Grant No. 2022QKT001. the General Research Fund of Hong Kong under Grant Nos. HKBU12303421 and HKBU12300123, and the National Natural Science Foundation of China under Grant No. 12071305.
出版者
EI入藏号
20243717017548
EI分类号
:1202.2
来源库
EV Compendex
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/832829
专题理学院_统计与数据科学系
作者单位
1.School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai; 201620, China
2.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen; 518055, China
3.School of Statistics, KLATASDS-MOE, East China Normal University, Shanghai; 200062, China
4.Department of Mathematics, Hong Kong Baptist University, 519087, Hong Kong
第一作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Tang, Yuanyuan,Wang, Xiaorui,Zhu, Jianming,et al. Robust Inference for Censored Quantile Regression[J]. Journal of Systems Science and Complexity,2024.
APA
Tang, Yuanyuan,Wang, Xiaorui,Zhu, Jianming,Lin, Hongmei,Tang, Yanlin,&Tong, Tiejun.(2024).Robust Inference for Censored Quantile Regression.Journal of Systems Science and Complexity.
MLA
Tang, Yuanyuan,et al."Robust Inference for Censored Quantile Regression".Journal of Systems Science and Complexity (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang, Yuanyuan]的文章
[Wang, Xiaorui]的文章
[Zhu, Jianming]的文章
百度学术
百度学术中相似的文章
[Tang, Yuanyuan]的文章
[Wang, Xiaorui]的文章
[Zhu, Jianming]的文章
必应学术
必应学术中相似的文章
[Tang, Yuanyuan]的文章
[Wang, Xiaorui]的文章
[Zhu, Jianming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。