题名 | GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement |
作者 | |
DOI | |
发表日期 | 2024-06-22
|
ISSN | 1063-6919
|
ISBN | 979-8-3503-5301-3
|
会议录名称 | |
会议日期 | 16-22 June 2024
|
会议地点 | Seattle, WA, USA
|
摘要 | Object pose refinement is essential for robust object pose estimation. Previous work has made significant progress to-wards instance-level object pose refinement. Yet, category-level pose refinement is a more challenging problem due to large shape variations within a category and the discrep-ancies between the target object and the shape prior. To address these challenges, we introduce a novel architecture for category-level object pose refinement. Our approach in-tegrates an HS-Iayer and learnable affine transformations, which aims to enhance the extraction and alignment of Geometric information. Additionally, we introduce a cross-cloud transformation mechanism that efficiently merges di-verse data sources. Finally, we push the limits of our model by incorporating the shape prior information for translation and size error prediction. We conducted extensive ex-periments to demonstrate the effectiveness of the proposed framework. Through extensive quantitative experiments, we demonstrate significant improvement over the baseline method by a large margin across all metrics.11Project page: https://lynne-zheng-linfang.github.io/georef.github.io |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/833880 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Shenzhen Key Laboratory of Control Theory and Intelligent Systems, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, China 2.School of Computer Science. University of Birmigsham, UK 3.Department of Computer Science, the University of Hong Kong, China |
第一作者单位 | 系统设计与智能制造学院 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Linfang Zheng,Tze Ho Elden Tse,Chen Wang,et al. GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论