中文版 | English
题名

Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes

作者
DOI
发表日期
2024-06-22
ISSN
1063-6919
ISBN
979-8-3503-5301-3
会议录名称
会议日期
16-22 June 2024
会议地点
Seattle, WA, USA
摘要
Concealed Object Detection (COD) aims to identify objects visually embedded in their background. Existing COD datasets and methods predominantly focus on animals or humans, ignoring the agricultural domain, which often contains numerous, small, and concealed crops with severe occlusions. In this paper, we introduce Concealed Crop Detection (CCD), which extends classic COD to agricultural domains. Experimental study shows that unimodal data provides insufficient information for CCD. To address this gap, we first collect a large-scale RGB-D dataset, ACOD-12K, containing high-resolution crop images and depth maps. Then, we propose a foundational framework named Recurrent Iterative Segmentation Network (RISNet). To tackle the challenge of dense objects, we employ multi-scale receptive fields to capture objects of varying sizes, thus enhancing the detection performance for dense objects. By fusing depth features, our method can acquire spatial information about concealed objects to mitigate disturbances caused by intricate backgrounds and occlusions. Furthermore, our model adopts a multi-stage iterative approach, using predictions from each stage as gate attention to reinforce position information, thereby improving the detection accuracy for small objects. Extensive experimental results demonstrate that our RISNet achieves new state-of-the-art performance on both newly proposed CCD and classic COD tasks. All resources will be available at https://github.com/Kki2Eve/RISNet.
学校署名
其他
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/833883
专题南方科技大学
作者单位
1.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University
2.College of Computer and Information Technology, China Three Gorges University
3.Southern University of Science and Technology
4.University of Birmingham
5.Departmental of Computer Science, College of William and Mary
推荐引用方式
GB/T 7714
Liqiong Wang,Jinyu Yang,Yanfu Zhang,et al. Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liqiong Wang]的文章
[Jinyu Yang]的文章
[Yanfu Zhang]的文章
百度学术
百度学术中相似的文章
[Liqiong Wang]的文章
[Jinyu Yang]的文章
[Yanfu Zhang]的文章
必应学术
必应学术中相似的文章
[Liqiong Wang]的文章
[Jinyu Yang]的文章
[Yanfu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。