[1] Daniel Coelho and Miguel Oliveira. “A review of end-to-end autonomous drivingin urban environments”. In: IEEE Access 10 (2022), pp. 75296–75311.
[2] Ruihua Han and Development Team. IR-SIM: A python based Lightweight intelligentrobot simulator. 2024. URL: https://github.com/hanruihua/ir-sim.
[3] Javier Alonso-Mora et al. “Optimal reciprocal collision avoidance for multiplenon-holonomic robots”. In: Distributed autonomous robotic systems. Springer,2013, pp. 203–216.
[4] Zhichao Han et al. “An efficient spatial-temporal trajectory planner for autonomousvehicles in unstructured environments”. In: IEEE Transactions on Intelligent TransportationSystems (2023).
[5] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. “Kinodynamic trajectoryoptimization and control for car-like robots”. In: 2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 5681–5686.
[6] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. “Optimization-basedcollision avoidance”. In: IEEE Transactions on Control Systems Technology 29.3(2020), pp. 972–983.
[7] Changan Chen et al. “Crowd-robot interaction: Crowd-aware robot navigationwith attention-based deep reinforcement learning”. In: 2019 International Conferenceon Robotics and Automation (ICRA). IEEE. 2019, pp. 6015–6022.
[8] Shuaijun Wang et al. “Adaptive environment modeling based reinforcementlearning for collision avoidance in complex scenes”. In: 2022 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 9011–9018.
[9] Tingxiang Fan et al. “Distributed multi-robot collision avoidance via deep reinforcementlearning for navigation in complex scenarios”. In: The InternationalJournal of Robotics Research 39.7 (2020), pp. 856–892.
[10] Chonghao Sima et al. “DriveLM: Driving with Graph Visual Question Answering”.In: arXiv preprint arXiv:2312.14150 (2023).
[11] Ahmed Hussain Qureshi et al. “Motion planning networks: Bridging the gapbetween learning-based and classical motion planners”. In: IEEE Transactions onRobotics 37.1 (2020), pp. 48–66.
[12] Linjun Li et al. “Mpc-mpnet: Model-predictive motion planning networks forfast, near-optimal planning under kinodynamic constraints”. In: IEEE Roboticsand Automation Letters 6.3 (2021), pp. 4496–4503.
[13] Jur Van den Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity obstaclesfor real-time multi-agent navigation”. In: 2008 IEEE international conferenceon robotics and automation. Ieee. 2008, pp. 1928–1935.
[14] Jamie Snape et al. “The hybrid reciprocal velocity obstacle”. In: IEEE Transactionson Robotics 27.4 (2011), pp. 696–706.
[15] Jur Van Den Berg et al. “Reciprocal n-body collision avoidance”. In: RoboticsResearch: The 14th International Symposium ISRR. Springer. 2011, pp. 3–19.
[16] Bharath Gopalakrishnan et al. “Prvo: Probabilistic reciprocal velocity obstaclefor multi robot navigation under uncertainty”. In: 2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 1089–1096.
[17] Ruihua, Han et al. “Reinforcement learned distributed multi-robot navigationwith reciprocal velocity obstacle shaped rewards”. In: IEEE Robotics and AutomationLetters (RAL) 7.3 (2022), pp. 5896–5903.
[18] Ruihua, Han et al. “RDA: An accelerated collision free motion planner for autonomousnavigation in cluttered environments”. In: IEEE Robotics and AutomationLetters (RAL) 8.3 (2023), pp. 1715–1722.
[19] Ruihua Han et al. “NeuPAN: Direct Point Robot Navigation with End-to-EndModel-based Learning”. In: arXiv preprint arXiv:2403.06828 (2024).
[20] Zeqing Zhang, Ruihua, Han, and Jia Pan. “An efficient centralized planner formultiple automated guided vehicles at the crossroad of polynomial curves”. In:IEEE Robotics and Automation Letters (RAL) 7.1 (2021), pp. 398–405.
[21] Shreyas Kousik et al. “Bridging the gap between safety and real-time performancein receding-horizon trajectory design for mobile robots”. In: The InternationalJournal of Robotics Research 39.12 (2020), pp. 1419–1469. ISSN: 0278-3649.
[22] Matteo Guerra et al. “Avoiding local minima in the potential field method usinginput-to-state stability”. In: Control Engineering Practice 55 (2016), pp. 174–184.
[23] Daniel Hennes et al. “Multi-robot collision avoidance with localization uncertainty.”In: AAMAS. 2012, pp. 147–154.
[24] Ruihua Han, Shengduo Chen, and Qi Hao. “A Distributed Range-Only CollisionAvoidance Approach for Low-cost Large-scale Multi-Robot Systems”. In: 2020IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.2020, pp. 8020–8026.
[25] Ryan Lowe et al. “Multi-agent actor-critic for mixed cooperative-competitiveenvironments”. In: arXiv preprint arXiv:1706.02275 (2017).
[26] Pinxin Long et al. “Towards optimally decentralized multi-robot collision avoidancevia deep reinforcement learning”. In: 2018 IEEE International Conference onRobotics and Automation (ICRA). IEEE. 2018, pp. 6252–6259.
[27] Jing Liang et al. “Crowd-Steer: Realtime Smooth and Collision-Free Robot Navigationin Densely Crowded Scenarios Trained using High-Fidelity Simulation.”In: IJCAI. 2020, pp. 4221–4228.
[28] Michael Everett, Yu Fan Chen, and Jonathan P How. “Motion planning amongdynamic, decision-making agents with deep reinforcement learning”. In: 2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.2018, pp. 3052–3059.
[29] Yu Fan Chen et al. “Socially aware motion planning with deep reinforcementlearning”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). IEEE. 2017, pp. 1343–1350.
[30] Ruihua Han, Shengduo Chen, and Qi Hao. “Cooperative Multi-Robot Navigationin Dynamic Environment with Deep Reinforcement Learning”. In: 2020IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 448–454.
[31] Michael Everett, Yu Fan Chen, and Jonathan P How. “Collision avoidance inpedestrian-rich environments with deep reinforcement learning”. In: IEEE Access9 (2021), pp. 10357–10377.
[32] Adarsh Jagan Sathyamoorthy Utsav Patel Nithish K Sanjeev Kumar and DineshManocha. “DWA-RL: Dynamically Feasible Deep Reinforcement Learning Policyfor Robot Navigation among Mobile Obstacles”. In: 2021 IEEE InternationalConference on Robotics and Automation (ICRA). IEEE. 2021.
[33] Daniel Claes and Karl Tuyls. “Multi robot collision avoidance in a shared workspace”.In: Autonomous Robots 42.8 (2018), pp. 1749–1770.
[34] Bharath Gopalakrishnan et al. “Prvo: Probabilistic reciprocal velocity obstaclefor multi robot navigation under uncertainty”. In: 2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 1089–1096.
[35] Yu Fan Chen et al. “Decentralized non-communicating multiagent collision avoidancewith deep reinforcement learning”. In: 2017 IEEE international conference onrobotics and automation (ICRA). IEEE. 2017, pp. 285–292.
[36] P. Wenzel et al. “Vision-Based Mobile Robotics Obstacle Avoidance With DeepReinforcement Learning”. In: ArXiv abs/2103.04727 (2021).
[37] ChengboWang et al. “Research on intelligent collision avoidance decision-makingof unmanned ship in unknown environments”. In: Evolving Systems (2019), pp. 1–10.
[38] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization”.In: arXiv preprint arXiv:1607.06450 (2016).
[39] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprintarXiv:1707.06347 (2017).
[40] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[41] Marc-Oliver Sonneberg et al. “Autonomous unmanned ground vehicles for urbanlogistics: Optimization of last mile delivery operations”. In: Proceedings ofthe 52nd Hawaii International Conference on System Sciences. 2019.
[42] David González et al. “A review of motion planning techniques for automatedvehicles”. In: IEEE Transactions on Intelligent Transportation Systems 17.4 (2015),pp. 1135–1145.
[43] Mihail Pivtoraiko, RossAKnepper, and Alonzo Kelly. “Differentially constrainedmobile robot motion planning in state lattices”. In: Journal of Field Robotics 26.3(2009), pp. 308–333.
[44] Michael Montemerlo et al. “Junior: The stanford entry in the urban challenge”.In: Journal of Field Robotics 25.9 (2008), pp. 569–597.
[45] Rômulo Ramos Radaelli et al. “A motion planner for car-like robots based onrapidly-exploring random trees”. In: Advances in Artificial Intelligence–IBERAMIA2014: 14th Ibero-American Conference on AI, Santiago de Chile, Chile, November 24-27, 2014, Proceedings 14. Springer. 2014, pp. 469–480.
[46] Joseph Funke et al. “Up to the limits: Autonomous Audi TTS”. In: 2012 IEEEIntelligent Vehicles Symposium. IEEE. 2012, pp. 541–547.
[47] Manel Ammour, Rodolfo Orjuela, and Michel Basset. “Collision avoidance forautonomous vehicle using MPC and time varying Sigmoid safety constraints”.In: IFAC-PapersOnLine 54.10 (2021), pp. 39–44.
[48] Felix Rey et al. “Fully decentralized admm for coordination and collision avoidance”.In: 2018 European Control Conference (ECC). IEEE. 2018, pp. 825–830.
[49] ZhitaoWang et al. “Parallel optimal control for cooperative automation of largescaleconnected vehicles via admm”. In: 2018 21st International Conference on IntelligentTransportation Systems (ITSC). IEEE. 2018, pp. 1633–1639.
[50] Zhepei Wang et al. “Geometrically constrained trajectory optimization for multicopters”.In: arXiv preprint arXiv:2103.00190 (2021).
[51] Weibo Xia, Weihong Wang, and Chuan Gao. “Trajectory optimization with obstaclesavoidance via strong duality equivalent and hp-pseudospectral sequentialconvex programming”. In: Optimal Control Applications and Methods 43.2 (2022),pp. 566–587.
[52] Zilong Cheng et al. “ADMM-based parallel optimization for multi-agent collisionfreemodel predictive control”. In: arXiv preprint arXiv:2101.09894 (2021).
[53] Roya Firoozi et al. “A distributed multi-robot coordination algorithm for navigationin tight environments”. In: arXiv preprint arXiv:2006.11492 (2020).
[54] Joseph Funke et al. “Collision avoidance and stabilization for autonomous vehiclesin emergency scenarios”. In: IEEE Transactions on Control Systems Technology25.4 (2016), pp. 1204–1216.
[55] Stephen M Erlien, Susumu Fujita, and J Christian Gerdes. “Safe driving envelopesfor shared control of ground vehicles”. In: IFAC Proceedings Volumes46.21 (2013), pp. 831–836.
[56] Erick J Rodrıéguez-Seda et al. “Trajectory tracking with collision avoidance fornonholonomic vehicles with acceleration constraints and limited sensing”. In:The International Journal of Robotics Research 33.12 (2014), pp. 1569–1592.
[57] Zeqing Zhang et al. “A generalized continuous collision detection frameworkof polynomial trajectory for mobile robots in cluttered environments”. In: IEEERobotics and Automation Letters (RAL) 7.4 (2022), pp. 9810–9817.
[58] Stephen Boyd et al. “Distributed optimization and statistical learning via thealternating direction method of multipliers”. In: Foundations and Trends® in Machinelearning 3.1 (2011), pp. 1–122.
[59] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge universitypress, 2004.
[60] Timothy Barfoot, James R Forbes, and Paul T Furgale. “Pose estimation usinglinearized rotations and quaternion algebra”. In: Acta Astronautica 68.1-2 (2011),pp. 101–112.
[61] KevinMLynch and Frank C Park. Modern Robotics. Cambridge University Press,2017.
[62] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modelinglanguage for convex optimization”. In: Journal of Machine Learning Research 17.83(2016), pp. 1–5.
[63] Andrei M Shkel and Vladimir Lumelsky. “Classification of the Dubins set”. In:Robotics and Autonomous Systems 34.4 (2001), pp. 179–202.
[64] Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo,an open-source multi-robot simulator”. In: 2004 IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3.IEEE. 2004, pp. 2149–2154.
[65] Martin Ester et al. “A density-based algorithm for discovering clusters in largespatial databases with noise.” In: kdd. Vol. 96. 34. 1996, pp. 226–231.
[66] Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. “Mobile ALOHA: Learning BimanualMobile Manipulation with Low-Cost Whole-Body Teleoperation”. In: arXiv.2024.
[67] Tesla. AI & Robotics. https://www.tesla.com/AI. 2023.
[68] Shreyas Kousik et al. “Safe, optimal, real-time trajectory planning with a parallelconstrained bernstein algorithm”. In: IEEE Transactions on Robotics 37.3 (2020),pp. 815–830.
[69] Boyu Zhou et al. “Raptor: Robust and perception-aware trajectory replanningfor quadrotor fast flight”. In: IEEE Transactions on Robotics 37.6 (2021), pp. 1992–2009.
[70] Jesus Tordesillas et al. “Faster: Fast and safe trajectory planner for navigation inunknown environments”. In: IEEE Transactions on Robotics 38.2 (2021), pp. 922–938.
[71] Alessandro Devo et al. “Towards generalization in target-driven visual navigationby using deep reinforcement learning”. In: IEEE Transactions on Robotics 36.5(2020), pp. 1546–1561.
[72] Wei Xiao et al. “Barriernet: Differentiable control barrier functions for learningof safe robot control”. In: IEEE Transactions on Robotics (2023).
[73] Yihan Hu et al. “Planning-oriented autonomous driving”. In: Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, pp. 17853–17862.
[74] Zhiqi Li et al. “Bevformer: Learning bird’s-eye-view representation from multicameraimages via spatiotemporal transformers”. In: European Conference on ComputerVision. Springer. 2022, pp. 1–18.
[75] Lars Mescheder et al. “Occupancy networks: Learning 3d reconstruction in functionspace”. In: Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition. 2019, pp. 4460–4470.
[76] Oren Salzman and Dan Halperin. “Asymptotically near-optimal RRT for fast,high-quality motion planning”. In: IEEE Transactions on Robotics 32.3 (2016), pp. 473–483.
[77] Wenchao Ding et al. “Epsilon: An efficient planning system for automated vehiclesin highly interactive environments”. In: IEEE Transactions on Robotics 38.2(2021), pp. 1118–1138.
[78] Xin Zhou et al. “Ego-planner: An esdf-free gradient-based local planner forquadrotors”. In: IEEE Robotics and Automation Letters 6.2 (2020), pp. 478–485.
[79] Ardi Tampuu et al. “A survey of end-to-end driving: Architectures and trainingmethods”. In: IEEE Transactions on Neural Networks and Learning Systems 33.4(2020), pp. 1364–1384.
[80] Anthony Francis et al. “Long-range indoor navigation with prm-rl”. In: IEEETransactions on Robotics 36.4 (2020), pp. 1115–1134.
[81] Changan Chen et al. “Relational graph learning for crowd navigation”. In: 2020IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.2020, pp. 10007–10013.
[82] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXivpreprint arXiv:1604.07316 (2016).
[83] Felipe Codevilla et al. “End-to-end driving via conditional imitation learning”.In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.2018, pp. 4693–4700.
[84] Jiarong Lin et al. “Flying through a narrow gap using neural network: an end-toendplanning and control approach”. In: 2019 IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 3526–3533.
[85] Tim Salzmann et al. “Real-time neural MPC: Deep learning model predictivecontrol for quadrotors and agile robotic platforms”. In: IEEE Robotics and AutomationLetters 8.4 (2023), pp. 2397–2404.
[86] Jacob Sacks and Byron Boots. “Learning Sampling Distributions for Model PredictiveControl”. In: Conference on Robot Learning. PMLR. 2023, pp. 1733–1742.
[87] Grady Williams et al. “Information-theoretic model predictive control: Theoryand applications to autonomous driving”. In: IEEE Transactions on Robotics 34.6(2018), pp. 1603–1622.
[88] Brandon Amos et al. “Differentiable mpc for end-to-end planning and control”.In: Advances in Neural Information Processing Systems 31 (2018).
[89] Akshay Agrawal, Shane Barratt, and Stephen Boyd. “Learning convex optimizationmodels”. In: IEEE/CAA Journal of Automatica Sinica 8.8 (2021), pp. 1355–1364.
[90] Yang Yang et al. “Inexact block coordinate descent algorithms for nonsmoothnonconvex optimization”. In: IEEE Transactions on Signal Processing 68 (2019),pp. 947–961.
[91] Karol Gregor and Yann LeCun. “Learning fast approximations of sparse coding”.In: Proceedings of the 27th international conference on international conferenceon machine learning. 2010, pp. 399–406.
[92] Nir Shlezinger et al. “Model-based deep learning”. In: Proceedings of the IEEE(2023).
[93] Alexey Dosovitskiy et al. “CARLA: An open urban driving simulator”. In: Conferenceon Robot Learning. PMLR. 2017, pp. 1–16.
[94] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learninglibrary”. In: arXiv preprint arXiv:1912.01703 (2019).
[95] Akshay Agrawal et al. “Differentiable convex optimization layers”. In: Advancesin Neural Information Processing systems 32 (2019).
[96] Wei Xu et al. “Fast-lio2: Fast direct lidar-inertial odometry”. In: IEEE Transactionson Robotics 38.4 (2022), pp. 2053–2073.
[97] Tixiao Shan and Brendan Englot. “Lego-loam: Lightweight and ground-optimizedlidar odometry and mapping on variable terrain”. In: 2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 4758–4765.
[98] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for AutonomousDriving? The KITTI Vision Benchmark Suite”. In: Conference on Computer Visionand Pattern Recognition (CVPR). 2012.
[99] Alex H Lang et al. “Pointpillars: Fast encoders for object detection from pointclouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition. 2019, pp. 12697–12705.
[100] Wolfgang Hess et al. “Real-time loop closure in 2D LIDAR SLAM”. In: 2016 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 1271–1278.
[101] Giseop Kim and Ayoung Kim. “Scan Context: Egocentric Spatial Descriptor forPlace Recognition within 3D Point Cloud Map”. In: Proceedings of the IEEE/RSJInternational Conference on Intelligent Robots and Systems. Madrid, Oct. 2018.
[102] Karl Kurzer. Path planning in unstructured environments: A real-time hybrid a* implementationfor fast and deterministic path generation for the kth research conceptvehicle. 2016.
[103] Shinpei Kato et al. “Autoware on board: Enabling autonomous vehicles withembedded systems”. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). IEEE. 2018, pp. 287–296.
[104] Bernhard Kerbl et al. “3d gaussian splatting for real-time radiance field rendering”.In: ACM Transactions on Graphics 42.4 (2023), pp. 1–14.
[105] J. Bolte, Shoham Sabach, and Marc Teboulle. “Proximal Alternating LinearizedMinimization for Nonconvex and Nonsmooth Problems”. In: Mathematical Programming146 (2014), pp. 459–494.
修改评论