中文版 | English
题名

Computational Design and Energy-Efficient Optimization of Overconstrained Robotic Limbs

姓名
姓名拼音
GU Yuping
学号
12050015
学位类型
博士
学位专业
计算机与科学
导师
宋超阳
导师单位
机械与能源工程系
外机构导师
潘佳
外机构导师单位
香港大学
论文答辩日期
2024-09-06
论文提交日期
2024-09-26
学位授予单位
香港大学
学位授予地点
香港
摘要

Energy efficiency is one of the key evaluating indicators for legged robots, which is also the driving factor in biological structure evolution. Lots of efforts have been made to develop legged machines with agile and energy-efficient motion like animals. By leveraging the planar four-bar or its variations, modern robotic design can reduce energy consumption with negligible leg inertia, which has been a widely adopted design pattern, but remains a limited adoption of overconstrained linkages in robotic application, even though it is a class of simplest revolute-only spatial mechanism. On the other hand, most of the existing legged robots still make significant trade-offs among various design indices, and there is an open question of which limb configuration has the best performance across energy efficiency, versatility, and mechanical robustness. This thesis builds upon the theoretical foundations, design principles, and optimization strategies of a class of novel robotic limb designs based on overconstrained linkage, towards developing advanced robotic limbs with better performance in energy efficiency. The first part of this thesis (Chapter 2) focuses on the kinematic derivation and engineering application of overconstrained robotic limbs, as well as the investigation of their spatial characteristics. The proposed prototype quadruped was capable of omni-directional locomotion and had a minimal turning radius (0.2 Body Length) using the fewest actuators. The second part (Chapter 3) develops a computational optimization framework for optimizing the energy efficiency performance of generalized robotic limb design. The framework is validated by hardware experiment using a reconfigurable quadruped prototype and empirically validated the outstanding performance of overconstrained robotic limbs in omni-directional locomotion. The third part (Chapter 4) deepens the findings in the above studies and proposes a computational framework to design 1-DoF overconstrained robotic limbs for desired spatial trajectory while achieving energy-efficient, self-collision-free motion in full-cycle rotations. The resulting hexapod robot with overconstrained robotic limbs showed state-of-the-art energy efficiency compared with other small hexapod robots in recent years. The findings of this research argue the potential for a research field in overconstrained robotics by using overconstrained linkages to formulate novel robot structures.

关键词
语种
英语
培养类别
联合培养
入学年份
2020
学位授予年份
2024-09
参考文献列表

[1] B. Aalae, H. Abderrahmane, and M. Gael. “Computational design of an automotive twist beam”. In: Journal of Computational Design and Engineering 3.3 (2016),pp. 215–225.
[2] M. F. B. Abas, A. S. B. M. Rafie, H. B. Yusoff, and K. A. B. Ahmad. “Flappingwing micro-aerial-vehicle: Kinematics, membranes, and flapping mechanismsof ornithopter and insect flight”. In: Chinese Journal of Aeronautics 29.5 (2016),pp. 1159–1177.
[3] S. Acharyya and M. Mandal. “Performance of EAs for four-bar linkage synthesis”. In: Mechanism and Machine Theory 44.9 (2009), pp. 1784–1794.
[4] R. M. Alexander. “The gaits of bipedal and quadrupedal animals”. In: The International Journal of Robotics Research 3.2 (1984), pp. 49–59.
[5] H. Alt and M. Godau. “Computing the Fréchet distance between two polygonalcurves”. In: International Journal of Computational Geometry & Applications 5.01n02(1995), pp. 75–91.
[6] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. Brown, D. McMordie,U. Saranli, R. Full, and D. E. Koditschek. “Rhex: A biologically inspired hexapodrunner”. In: Autonomous Robots 11 (2001), pp. 207–213.
[7] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. “CasADi: asoftware framework for nonlinear optimization and optimal control”. In: Mathematical Programming Computation 11 (2019), pp. 1–36.
[8] E. K. Antonsson and J. Cagan. Formal engineering design synthesis. CambridgeUniversity Press, 2001.
[9] Z. Anvari, P. Ataei, and M. Tale Masouleh. “The collision-free workspace ofthe tripteron parallel robot based on a geometrical approach”. In: ComputationalKinematics: Proceedings of the 7th International Workshop on Computational Kinematics that was held at Futuroscope-Poitiers, France, in May 2017. Springer. 2018,pp. 357–364.
[10] P. Arena, L. Fortuna, M. Frasca, L. Patané, and M. Pavone. “Realization of aCNN-driven cockroach-inspired robot”. In: 2006 IEEE International Symposiumon Circuits and Systems. IEEE. 2006, 4–pp.
[11] P. Arm, R. Zenkl, P. Barton, L. Beglinger, A. Dietsche, L. Ferrazzini, E. Hampp, J.Hinder, C. Huber, D. Schaufelberger, et al. “Spacebok: A dynamic legged robotfor space exploration”. In: 2019 international conference on robotics and automation(ICRA). IEEE. 2019, pp. 6288–6294.
[12] M. Bächer, S. Coros, and B. Thomaszewski. “Linkedit: Interactive linkage editing using symbolic kinematics”. In: ACM Transactions on Graphics (TOG) 34.4(2015), pp. 1–8.
[13] S. Bai, Z. Li, and J. Angeles. “Exact path synthesis of RCCC linkages for a maximum of nine prescribed positions”. In: Journal of Mechanisms and Robotics 14.2(2022), p. 021011.
[14] A. T. Baisch, P. S. Sreetharan, and R. J. Wood. “Biologically-inspired locomotionof a 2g hexapod robot”. In: 2010 IEEE/RSJ international conference on intelligentrobots and systems. IEEE. 2010, pp. 5360–5365.
[15] J. E. Baker. “The Bennett, Goldberg and Myard linkages—in perspective”. In:Mechanism and Machine Theory 14.4 (1979), pp. 239–253.
[16] G. T. Bennett. “A New Mechanism”. In: Engineering(London) 76 (1903), pp. 777–778.
[17] G. Bharaj, S. Coros, B. Thomaszewski, J. Tompkin, B. Bickel, and H. Pfister.“Computational design of walking automata”. In: Proceedings of the 14th ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2015, pp. 93–100.
[18] P. Birkmeyer, K. Peterson, and R. S. Fearing. “DASH: A dynamic 16g hexapedalrobot”. In: 2009 IEEE/RSJ international conference on intelligent robots and systems.IEEE. 2009, pp. 2683–2689.
[19] P. Biswal and P. K. Mohanty. “Development of quadruped walking robots: Areview”. In: Ain Shams Engineering Journal 12.2 (2021), pp. 2017–2031.
[20] M. Bjelonic, N. Kottege, T. Homberger, P. Borges, P. Beckerle, and M. Chli.“Weaver: Hexapod robot for autonomous navigation on unstructured terrain”.In: Journal of Field Robotics 35.7 (2018), pp. 1063–1079.
[21] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim. “MITCheetah 3: Design and control of a robust, dynamic quadruped robot”. In: 2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.2018, pp. 2245–2252.
[22] W. Bosworth, S. Kim, and N. Hogan. “The MIT super mini cheetah: A small,low-cost quadrupedal robot for dynamic locomotion”. In: 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 2015, pp. 1–8.
[23] J. C. Carvalho and T. R. Silvestre. “Motion analysis of a six-legged robot usingBennett’s linkage as leg”. In: Mechanics Based Design of Structures and Machines44.1-2 (2016), pp. 86–95.
[24] M. Ceccarelli and C. Lanni. “A multi-objective optimum design of general 3Rmanipulators for prescribed workspace limits”. In: Mechanism and machine theory39.2 (2004), pp. 119–132.
[25] J. J. Cervantes-Sánchez, L. Gracia, E. Alba-Ruiz, and J. M. Rico-Martínez. “Synthesis of a special RPSPR spatial linkage function generator for six precisionpoints”. In: Mechanism and machine theory 46.2 (2011), pp. 83–96.
[26] D. Ceylan, W. Li, N. J. Mitra, M. Agrawala, and M. Pauly. “Designing and fabricating mechanical automata from mocap sequences”. In: ACM Transactions onGraphics (TOG) 32.6 (2013), pp. 1–11.
[27] M. Chadwick, H. Kolvenbach, F. Dubois, H. F. Lau, and M. Hutter. “Vitruvio:An open-source leg design optimization toolbox for walking robots”. In: IEEERobotics and Automation Letters 5.4 (2020), pp. 6318–6325.
[28] X. Chai, X. Kang, D. Gan, H. Yu, and J. S. Dai. “Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary amongclassical linkages”. In: Mechanism and Machine Theory 156 (2021), p. 104133.
[29] F. Y. Chen. “Gripping mechanisms for industrial robots: an overview”. In: Mechanism and Machine Theory 17.5 (1982), pp. 299–311.
[30] Y. Chen and Z. You. “An extended Myard linkage and its derived 6R linkage”.In: Journal of Mechanical Design. 130.5 (2008), p. 052301.
[31] Y. Chen, C. Lu, J. Yan, J. Feng, and P. Sareh. “Intelligent computational designof scalene-faceted flat-foldable tessellations”. In: Journal of Computational Designand Engineering 9.5 (2022), pp. 1765–1774.
[32] Y. Cheng, P. Song, Y. Lu, W. J. J. Chew, and L. Liu. “Exact 3D path generationvia 3D cam-linkage mechanisms”. In: ACM Transactions on Graphics (TOG) 41.6(2022), pp. 1–13.
[33] Y. Cheng, Y. Sun, P. Song, and L. Liu. “Spatial-temporal motion control via composite cam-follower mechanisms”. In: ACM Transactions on Graphics (TOG) 40.6(2021), pp. 1–15.
[34] C. Chiang. “On the classification of spherical four-bar linkages”. In: Mechanismand Machine Theory 19.3 (1984), pp. 283–287.
[35] J.-W. Chung, I.-W. Park, and J.-H. Oh. “On the design and development of aquadruped robot platform”. In: Advanced Robotics 24.1-2 (2010), pp. 277–298.
[36] J.-F. Collard, P. Fisette, and P. Duysinx. “Contribution to the optimizationof closed-loop multibody systems: Application to parallel manipulators”. In:Multibody System Dynamics 13 (2005), pp. 69–84.
[37] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W.Matusik, and B. Bickel. “Computational design of mechanical characters”. In:ACM Transactions on Graphics (TOG) 32.4 (2013), pp. 1–12.
[38] A. Crespi, K. Karakasiliotis, A. Guignard, and A. J. Ijspeert. “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walkinggaits”. In: IEEE Transactions on Robotics 29.2 (2013), pp. 308–320.
[39] H. Cruse and C. Bartling. “Movement of joint angles in the legs of a walkinginsect, Carausius morosus”. In: Journal of Insect Physiology 41.9 (1995), pp. 761–771.
[40] H. Cruse, V. Dürr, M. Schilling, and J. Schmitz. “Principles of insect locomotion”.In: Spatial temporal patterns for action-oriented perception in roving robots (2009),pp. 43–96.
[41] H. Cruse, V. Dürr, J. Schmitz, and A. Schneider. “Control of hexapod walking inbiological systems”. In: Adaptive motion of animals and machines (2006), pp. 17–29.
[42] J. S. Dai, D. Wang, and L. Cui. “Orientation and workspace analysis of the multifingered metamorphic hand—Metahand”. In: IEEE Transactions on Robotics 25.4(2009), pp. 942–947.
[43] J. S. Dai, Z. Huang, and H. Lipkin. “Mobility of Overconstrained Parallel Mechanisms”. In: Journal of Mechanical Design 128.1 (Oct. 2004), pp. 220–229.
[44] J. Denavit and R. S. Hartenberg. “A kinematic notation for lower-pair mechanisms based on matrices”. In: Journal of Applied Mechanics 22.2 (1955), pp. 215–221.
[45] P. Diaconis, S. Holmes, and M. Shahshahani. “Sampling from a manifold”. In:Advances in modern statistical theory and applications: a Festschrift in honor of MorrisL. Eaton. Institute of Mathematical Statistics, 2013, pp. 102–125.
[46] K. M. Digumarti, C. Gehring, S. Coros, J. Hwangbo, and R. Siegwart. “Concurrent optimization of mechanical design and locomotion control of a leggedrobot”. In: Mobile Service Robotics. World Scientific, 2014, pp. 315–323.
[47] T. Dinev, C. Mastalli, V. Ivan, S. Tonneau, and S. Vijayakumar. “A versatile codesign approach for dynamic legged robots”. In: 2022 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 10343–10349.
[48] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park. “Representation-freemodel predictive control for dynamic motions in quadrupeds”. In: IEEE Transactions on Robotics 37.4 (2021), pp. 1154–1171.
[49] G. Fadini, T. Flayols, A. Del Prete, N. Mansard, and P. Souères. “Computationaldesign of energy-efficient legged robots: Optimizing for size and actuators”. In:2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021,pp. 9898–9904.
[50] S. Feng, Y. Gu, W. Guo, Y. Guo, F. Wan, J. Pan, and C. Song. “An overconstrainedrobotic leg with coaxial quasi-direct drives for omni-directional ground mobility”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).IEEE. 2021, pp. 11477–11484.
[51] G. Gabrielli. “What price speed? Specific power required for propulsion of vehicles”. In: Mech. Eng. (1950), pp. 775–781.
[52] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. MarínJiménez. “Automatic generation and detection of highly reliable fiducial markers under occlusion”. In: Pattern Recognition 47.6 (2014), pp. 2280–2292.
[53] G. Gogu. “Chebychev–Grübler–Kutzbach’s criterion for mobility calculation ofmulti-loop mechanisms revisited via theory of linear transformations”. In: European Journal of Mechanics-A/Solids 24.3 (2005), pp. 427–441.
[54] D. E. Golberg. “Genetic algorithms in search, optimization, and machine learning”. In: Addion wesley 1989.102 (1989), p. 36.
[55] M. Goldberg. “New five-bar and six-bar linkages in three dimensions”. In: Trans.ASME. 65 (1943), pp. 649–661.
[56] C. Gosselin and J. Angeles. “A global performance index for the kinematic optimization of robotic manipulators”. In: (1991).
[57] C. M. Gosselin. “The optimum design of robotic manipulators using dexterityindices”. In: Robotics and Autonomous systems 9.4 (1992), pp. 213–226.
[58] J. A. Grimes and J. W. Hurst. “The design of ATRIAS 1.0 a unique monopod,hopping robot”. In: Adaptive Mobile Robotics. World Scientific, 2012.
[59] Y. Gu, S. Feng, Y. Guo, F. Wan, J. S. Dai, J. Pan, and C. Song. “Overconstrainedcoaxial design of robotic legs with omni-directional locomotion”. In: Mechanismand Machine Theory 176 (2022), p. 105018.
[60] Y. Gu, Z. Wang, S. Feng, H. Sun, H. Lu, J. Pan, F. Wan, and C. Song. “Computational design towards energy efficient optimization in overconstrained roboticlimbs”. In: Journal of Computational Design and Engineering 10.5 (2023), pp. 1941–1956.
[61] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane. “Computationaldesign of robotic devices from high-level motion specifications”. In: IEEE Transactions on Robotics 34.5 (2018), pp. 1240–1251.
[62] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane. “Computational cooptimization of design parameters and motion trajectories for robotic systems”.In: The International Journal of Robotics Research 37.13-14 (2018), pp. 1521–1536.
[63] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane. “Task-based limb optimization for legged robots”. In: 2016 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS). IEEE. 2016, pp. 2062–2068.
[64] M. Hamann. “Line-symmetric motions with respect to reguli”. In: Mechanismand machine theory 46.7 (2011), pp. 960–974.
[65] A. Hamon and Y. Aoustin. “Cross four-bar linkage for the knees of a planarbipedal robot”. In: 2010 10th IEEE-RAS International Conference on HumanoidRobots. IEEE. 2010, pp. 379–384.
[66] N. Hansen, Y. Akimoto, and P. Baudis. CMA-ES/pycma on Github. Feb. 2019. URL:https://doi.org/10.5281/zenodo.2559634.
[67] N. Hansen, S. D. Müller, and P. Koumoutsakos. “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation(CMA-ES)”. In: Evolutionary computation 11.1 (2003), pp. 1–18.
[68] J. He and F. Gao. “Mechanism, actuation, perception, and control of highly dynamic multilegged robots: A review”. In: Chinese Journal of Mechanical Engineering 33 (2020), pp. 1–30.
[69] J. He and F. Gao. “Type synthesis for bionic quadruped walking robots”. In:Journal of Bionic Engineering 12.4 (2015), pp. 527–538.
[70] D. F. Hoyt, S. J. Wickler, D. J. Dutto, G. E. Catterfeld, and D. Johnsen. “What arethe relations between mechanics, gait parameters, and energetics in terrestriallocomotion?” In: Journal of Experimental Zoology Part A: Comparative ExperimentalBiology 305.11 (2006), pp. 912–922.
[71] H. Huang and B. Li. “Geometric design of a bio-inspired flapping wing mechanism based on bennett-derived 6R deployable mechanisms”. In: InternationalDesign Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 46377. 2014, V05BT08A042.
[72] H. Huang, Z. Deng, and B. Li. “Mobile assemblies of large deployable mechanisms”. In: Journal of Space Engineering 5.1 (2012), pp. 1–14.
[73] Y.-J. Huang, S.-Y. Chan, W.-C. Lin, and S.-Y. Chuang. “Making and animatingtransformable 3D models”. In: Computers & Graphics 54 (2016), pp. 127–134.
[74] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate, and J.Hurst. “Atrias: Design and validation of a tether-free 3d-capable spring-massbipedal robot”. In: The International Journal of Robotics Research 35.12 (2016),pp. 1497–1521.
[75] S. Hussain, P. K. Jamwal, and P. Van Vliet. “Design synthesis and optimizationof a 4-SPS intrinsically compliant parallel wrist rehabilitation robotic orthosis”.In: Journal of Computational Design and Engineering 8.6 (2021), pp. 1562–1575.
[76] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy, and R. Siegwart. “StarlETH: A compliant quadrupedal robot for fast, efficient, and versatilelocomotion”. In: Adaptive Mobile Robotics. World Scientific, 2012, pp. 483–490.
[77] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J.Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al. “Anymal-a highly mobile and dynamic quadrupedal robot”. In: 2016 IEEE/RSJ international conferenceon intelligent robots and systems (IROS). IEEE. 2016, pp. 38–44.
[78] H. Isakhani, N. Bellotto, Q. Fu, and S. Yue. “Generative design and fabricationof a locust-inspired gliding wing prototype for micro aerial robots”. In: Journalof Computational Design and Engineering 8.5 (2021), pp. 1191–1203.
[79] J. M. Kaldor, D. L. James, and S. Marschner. “Simulating knitted cloth at theyarn level”. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH ’08. New York, NY,USA: Association for Computing Machinery, 2008.
[80] S. Kalouche. “GOAT: A legged robot with 3D agility and virtual compliance”.In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE. 2017, pp. 4110–4117.
[81] B. Katz, J. Di Carlo, and S. Kim. “Mini cheetah: A platform for pushing the limitsof dynamic quadruped control”. In: 2019 international conference on robotics andautomation (ICRA). IEEE. 2019, pp. 6295–6301.
[82] N. Kau, A. Schultz, N. Ferrante, and P. Slade. “Stanford doggo: An open-source,quasi-direct-drive quadruped”. In: 2019 International conference on robotics andautomation (ICRA). IEEE. 2019, pp. 6309–6315.
[83] P. M. Kebria, S. Al-Wais, H. Abdi, and S. Nahavandi. “Kinematic and dynamicmodelling of UR5 manipulator”. In: 2016 IEEE international conference on systems,man, and cybernetics (SMC). IEEE. 2016, pp. 004229–004234.
[84] G. Kenneally, A. De, and D. E. Koditschek. “Design principles for a family ofdirect-drive legged robots”. In: IEEE Robotics and Automation Letters 1.2 (2016),pp. 900–907.
[85] M. M. Khan and C. Chen. “Design of a single cam single actuator multiloop eyeball mechanism”. In: 2018 IEEE-RAS 18th International Conference on HumanoidRobots (Humanoids). IEEE. 2018, pp. 1143–1149.
[86] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”.In: The international journal of robotics research 5.1 (1986), pp. 90–98.
[87] S.-G. Kim and J. Ryu. “New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators”. In: IEEE Transactions on Robotics and Automation 19.4 (2003), pp. 731–736.
[88] W. Kim, S. Lee, M. Kang, J. Han, and C. Han. “Energy-efficient gait pattern generation of the powered robotic exoskeleton using DME”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2010, pp. 2475–2480.
[89] G. K. Klute, J. M. Czerniecki, and B. Hannaford. “Artificial muscles: Actuators for biorobotic systems”. In: The International Journal of Robotics Research 21.4(2002), pp. 295–309.
[90] J. R. Koza. “Survey of genetic algorithms and genetic programming”. In: Wesconconference record. Western Periodicals Company. 1995, pp. 589–594.
[91] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T.Koolen, P. Marion, and R. Tedrake. “Optimization-based locomotion planning,estimation, and control design for the atlas humanoid robot”. In: Autonomousrobots 40 (2016), pp. 429–455.
[92] M. Lakkanna, G. Mohan Kumar, and R. Kadoli. “Computational design ofmould sprue for injection moulding thermoplastics”. In: Journal of ComputationalDesign and Engineering 3.1 (2016), pp. 37–52.
[93] J. Lee. “A study on the manipulability measures for robot manipulators”. In:Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot andSystems. Innovative Robotics for Real-World Applications. IROS’97. Vol. 3. IEEE.1997, pp. 1458–1465.
[94] T.-H. Lee, D. Choi, and W. Lee. “Computational design and workspace analysisof a passive motion-scaling mechanism based on pantograph for microsurgery”.In: Journal of Computational Design and Engineering 8.6 (2021), pp. 1446–1467.
[95] T. Li, C. Zhang, S. Wang, and J. S. Dai. “Jumping with Expandable Trunk ofa Metamorphic Quadruped Robot—The Origaker II”. In: Applied Sciences 9.9(2019), p. 1778.
[96] Z. Li, G. Nawratil, F. Rist, and M. Hensel. “Invertible paradoxic loop structuresfor transformable design”. In: Computer Graphics Forum. Vol. 39. 2. Wiley OnlineLibrary. 2020, pp. 261–275.
[97] P.-C. Lin, H. Komsuoglu, and D. E. Koditschek. “Toward a 6 DOF body stateestimator for a hexapod robot with dynamical gaits”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vol. 3. IEEE. 2004,pp. 2265–2270.
[98] S. Lin, H. Wang, J. Liu, and Y. Zhang. “Geometric method of spatial linkagessynthesis for function generation with three finite positions”. In: Journal of Mechanical Design 140.8 (2018), p. 082303.
[99] W. Liu, J. Sun, and J. Chu. “Synthesis of a spatial RRSS mechanism for pathgeneration using the numerical atlas method”. In: Journal of Mechanical Design142.1 (2020), p. 012303.
[100] P. Lucas, S. Oota, J. Conradt, and A. Knoll. “Development of the neuroroboticmouse”. In: 2019 IEEE International Conference on Cyborg and Bionic Systems(CBS). IEEE. 2019, pp. 299–304.
[101] M. J. Lum, J. Rosen, M. N. Sinanan, and B. Hannaford. “Kinematic optimization of a spherical mechanism for a minimally invasive surgical robot”. In: IEEEInternational Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.2004. Vol. 1. IEEE. 2004, pp. 829–834.
[102] M. Luneckas, T. Luneckas, J. Kriauˇciunas, D. Udris, D. Plonis, R. Damaševiˇcius, ¯and R. Maskeliunas. “Hexapod robot gait switching for energy consumption ¯and cost of transport management using heuristic algorithms”. In: Applied sciences 11.3 (2021), p. 1339.
[103] Z. Luo, J. Shang, G. Wei, and L. Ren. “A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage”. In: Mechanism and Machine Theory128 (2018), pp. 16–32.
[104] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.
[105] R. R. Ma and A. M. Dollar. “On dexterity and dexterous manipulation”. In: 201115th International Conference on Advanced Robotics (ICAR). IEEE. 2011, pp. 1–7.
[106] X. Ma, K. Zhang, and J. S. Dai. “Novel spherical-planar and Bennett-spherical6R metamorphic linkages with reconfigurable motion branches”. In: Mechanismand Machine Theory 128 (2018), pp. 628–647.
[107] A. Maitra and K. A. Dill. “Bacterial growth laws reflect the evolutionary importance of energy efficiency”. In: Proceedings of the National Academy of Sciences112.2 (2015), pp. 406–411.
[108] D. Mannhart, F. Dubois, K. Bodie, V. Klemm, A. Morra, and M. Hutter. “CAMIanalysis, design and realization of a force-compliant variable cam system”. In:2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020,pp. 850–856.
[109] R. T. Marler and J. S. Arora. “Function-transformation methods for multiobjective optimization”. In: Engineering Optimization 37.6 (2005), pp. 551–570.
[110] J. P. Merlet. “Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots”. In: Journal of Mechanical Design 128.1 (2006), pp. 199–206.
[111] J.-P. Merlet. Parallel robots. Vol. 128. Springer Science & Business Media, 2005.
[112] K. Mombaur. “Using optimization to create self-stable human-like running”. In:Robotica 27.3 (2009), pp. 321–330.
[113] G. Moreda, M. Muñoz-García, and P. Barreiro. “High voltage electrification oftractor and agricultural machinery–A review”. In: Energy Conversion and Management 115 (2016), pp. 117–131.
[114] F. E. Myard. “Contribution à la géométrie des systèmes articulés”. In: SociétéMathématique de France. 59 (1931), pp. 183–210.
[115] Y. Nakamura. Advanced robotics: redundancy and optimization. Addison-WesleyLongman Publishing Co., Inc., 1990.
[116] C. Nie, X. P. Corcho, and M. Spenko. “Robots on the move: Versatility and complexity in mobile robot locomotion”. In: IEEE Robotics & Automation Magazine20.4 (2013), pp. 72–82.
[117] G. Nishida, A. Bousseau, and D. G. Aliaga. “Multi-pose interactive linkagedesign”. In: Computer Graphics Forum. Vol. 38. 2. Wiley Online Library. 2019,pp. 277–289.
[118] NOKOV. Mars series. 2024, May 07. URL: https://en.nokov.com/products/motion-capture-cameras/Mars.html.
[119] H. Nollexa. “Linkage coupler curve synthesis: A historical review—III. Spatial synthesis and optimization”. In: Mechanism and Machine Theory 10.1 (1975),pp. 41–55.
[120] K. C. Olds. “Global indices for kinematic and force transmission performance inparallel robots”. In: IEEE Transactions on Robotics 31.2 (2015), pp. 494–500.
[121] Z. Pandilov and V. Dukovski. “Comparison of the Characteristics Between Serial and Parallel Robots”. In: Acta Technica Corviniensis-Bulletin of Engineering 7.1(2014).
[122] P. Y. Papalambros and D. J. Wilde. Principles of optimal design: modeling and computation. Cambridge university press, 2000.
[123] C. Paredis and P. K. Khosla. “An approach for mapping kinematic task specifications into a manipulator design”. In: (1991).
[124] H.-W. Park, P. M. Wensing, and S. Kim. “High-speed bounding with the MITCheetah 2: Control design and experiments”. In: The International Journal ofRobotics Research 36.2 (2017), pp. 167–192.
[125] J. Park, K.-S. Kim, and S. Kim. “Design of a cat-inspired robotic leg for fast running”. In: Advanced Robotics 28.23 (2014), pp. 1587–1598.
[126] S. Pellegrino. Deployable structures. Vol. 412. Springer, 2014.
[127] J. Phillips. Freedom in machinery: Introducing screw theory. Vol. 1. Cambridge University Press, 1984.
[128] I. Poulakakis, J. A. Smith, and M. Buehler. “On the dynamics of bounding andextensions: towards the half-bound and gallop gaits”. In: Adaptive motion of animals and machines (2006), pp. 79–88.
[129] C. Prahacs, A. Saudners, M. K. Smith, D. McMordie, and M. Buehler. “Towardslegged amphibious mobile robotics”. In: Proceedings of the Canadian EngineeringEducation Association (CEEA) (2004).
[130] M. H. Raibert. Legged robots that balance. MIT press, 1986.
[131] D. Rakita, B. Mutlu, and M. Gleicher. “RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion”. In: Robotics: Science and Systems. Vol. 14.Pittsburgh, PA. 2018, pp. 26–30.
[132] S. Rezazadeh, A. Abate, R. L. Hatton, and J. W. Hurst. “Robot Leg Design: AConstructive Framework”. In: IEEE Access 6 (2018), pp. 54369–54387.
[133] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Vol. 317. Springer Science& Business Media, 2009.
[134] W. Rodriguez, M. Last, A. Kandel, and H. Bunke. “3-dimensional curve similarity using string matching”. In: Robotics and Autonomous Systems 49.3-4 (2004),pp. 165–172.
[135] R. Roussel, M.-P. Cani, J.-C. Léon, and N. J. Mitra. “Exploratory design of mechanical devices with motion constraints”. In: Computers & Graphics 74 (2018),pp. 244–256.
[136] R. Roussel, M.-P. Cani, J.-C. Léon, and N. J. Mitra. “SPIROU: constrained exploration for mechanical motion design”. In: Proceedings of the 1st Annual ACMSymposium on Computational Fabrication. 2017, pp. 1–11.
[137] S. S. Roy and D. K. Pratihar. “Effects of turning gait parameters on energyconsumption and stability of a six-legged walking robot”. In: Robotics and Autonomous Systems 60.1 (2012), pp. 72–82.
[138] F. Ruppert and A. Badri-Spröwitz. “Learning plastic matching of robot dynamics in closed-loop central pattern generators”. In: Nature Machine Intelligence 4.7(2022), pp. 652–660.
[139] M. Russo et al. “Kinematic analysis and multi-objective optimization of a 3-UPRparallel mechanism for a robotic leg”. In: Mechanism and Machine Theory. 120(2018), pp. 192–202.
[140] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R.Hadsell, and P. Battaglia. “Graph networks as learnable physics engines forinference and control”. In: International Conference on Machine Learning. PMLR.2018, pp. 4470–4479.
[141] J. Santiago-Prowald and H. Baier. “Advances in deployable structures and surfaces for large apertures in space”. In: CEAS Space Journal. 5 (2013), pp. 89–115.
[142] U. Saranli, M. Buehler, and D. E. Koditschek. “Design, modeling and preliminary control of a compliant hexapod robot”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 3. IEEE. 2000, pp. 2589–2596.
[143] U. Saranli, M. Buehler, and D. E. Koditschek. “RHex: A simple and highly mobile hexapod robot”. In: The International Journal of Robotics Research 20.7 (2001),pp. 616–631.
[144] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter. “Jointly learning to construct and control agents using deep reinforcement learning”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 9798–9805.
[145] L. Sciavicco and B. Siciliano. Modelling and control of robot manipulators. SpringerScience & Business Media, 2001.
[146] H.-C. Seherr-Thoss, F. Schmelz, and E. Aucktor. Universal joints and driveshafts:analysis, design, applications. Springer Science & Business Media, 2006.
[147] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim. “Design principles for highly efficient quadrupeds and implementation on the MIT Cheetahrobot”. In: 2013 IEEE International Conference on Robotics and Automation. IEEE.2013, pp. 3307–3312.
[148] M. A. Sharbafi and A. Seyfarth. Bioinspired legged locomotion: models, concepts,control and applications. Butterworth-Heinemann, 2017.
[149] Q. Shi, J. Gao, S. Wang, X. Quan, G. Jia, Q. Huang, and T. Fukuda. “Developmentof a Small-Sized Quadruped Robotic Rat Capable of Multimodal Motions”. In:IEEE Transactions on Robotics (2022).
[150] S. Shin, D. Shin, and N. Kang. “Topology optimization via machine learning anddeep learning: A review”. In: Journal of Computational Design and Engineering 10.4(2023), pp. 1736–1766.
[151] O. Sigmund and K. Maute. “Topology optimization approaches: A comparativereview”. In: Structural and multidisciplinary optimization 48.6 (2013), pp. 1031–1055.
[152] M. F. Silva. “Quadruped robot optimization using a genetic algorithm”. In: FieldRobotics. World Scientific, 2012, pp. 782–789.
[153] M. F. Silva and J. T. Machado. “A literature review on the optimization of leggedrobots”. In: Journal of Vibration and Control 18.12 (2012), pp. 1753–1767.
[154] K. Sims. “Evolving virtual creatures”. In: Proceedings of the 21st annual conferenceon Computer graphics and interactive techniques. 1994, pp. 15–22.
[155] C. Song and Y. Chen. “A family of mixed double-Goldberg 6R linkages”. In:Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.468.2139 (2012), pp. 871–890.
[156] C. Song, Y. Chen, and I. Chen. “Kinematic study of the original and revised general line-symmetric bricard 6r linkages”. In: Journal of Mechanisms and Robotics.6.3 (2014), pp. 52–68.
[157] C. Song, H. Feng, Y. Chen, I. Chen, and R. Kang. “Reconfigurable mechanismgenerated from the network of Bennett linkages”. In: Mechanism and MachineTheory. 88 (2015), pp. 49–62.
[158] Z. Song, Z. Luo, G. Wei, and J. Shang. “A portable six-wheeled mobile robotwith reconfigurable body and self-adaptable obstacle-climbing mechanisms”.In: Journal of Mechanisms and Robotics (2022), pp. 1–39.
[159] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and A. J. Ijspeert.“Towards dynamic trot gait locomotion: Design, control, and experiments withCheetah-cub, a compliant quadruped robot”. In: The International Journal ofRobotics Research 32.8 (2013), pp. 932–950.
[160] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V.Vanhoucke. “Sim-to-real: Learning agile locomotion for quadruped robots”. In:arXiv preprint arXiv:1804.10332 (2018).
[161] N. M. Tanner et al. On becoming human. CUP Archive, 1981.
[162] B. Thomaszewski, S. Coros, D. Gauge, V. Megaro, E. Grinspun, and M. Gross.“Computational design of linkage-based characters”. In: ACM Transactions onGraphics (TOG) 33.4 (2014), pp. 1–9.
[163] D. J. Todd. Walking machines: an introduction to legged robots. Springer Science &Business Media, 2013.
[164] Unitree Robotics. A1. 2023, April 30. URL: https://www.unitree.com/a1/.
[165] E. Van Henten, D. Van’t Slot, C. Hol, and L. Van Willigenburg. “Optimal manipulator design for a cucumber harvesting robot”. In: Computers and electronics inagriculture 65.2 (2009), pp. 247–257.
[166] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filterline-search algorithm for large-scale nonlinear programming”. In: Mathematicalprogramming 106 (2006), pp. 25–57.
[167] K. J. Waldron, G. L. Kinzel, and S. K. Agrawal. Kinematics, dynamics, and designof machinery. John Wiley & Sons, 2016.
[168] K. Waldron. “A family of overconstrained linkages”. In: Journal of Mechanisms2.2 (1967), pp. 201–211.
[169] K. Wampler and Z. Popovi´c. “Optimal gait and form for animal locomotion”.In: ACM Transactions on Graphics (TOG) 28.3 (2009), pp. 1–8.
[170] W. Wang, Z. Han, J. Pei, G. Pavesi, X. Gong, and S. Yuan. “Energy efficiencyoptimization of water pump based on heuristic algorithm and computationalfluid dynamics”. In: Journal of Computational Design and Engineering 10.1 (2023),pp. 382–397.
[171] R. A. Watson, S. G. Ficici, and J. B. Pollack. “Embodied evolution: Distributingan evolutionary algorithm in a population of robots”. In: Robotics and autonomoussystems 39.1 (2002), pp. 1–18.
[172] G. Wei and J. S. Dai. “A spatial eight-bar linkage and its association with the deployable platonic mechanisms”. In: Journal of Mechanisms and Robotics 6.2 (2014),p. 021010.
[173] G. Wei and J. S. Dai. “Origami-inspired integrated planar-spherical overconstrained mechanisms”. In: Journal of Mechanical Design 136.5 (2014), p. 051003.
[174] K. Weinmeister, P. Eckert, H. Witte, and A.-J. Ijspeert. “Cheetah-cub-S: Steeringof a quadruped robot using trunk motion”. In: 2015 IEEE international symposiumon safety, security, and rescue robotics (SSRR). IEEE. 2015, pp. 1–6.
[175] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli. “Gait and trajectoryoptimization for legged systems through phase-based end-effector parameterization”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 1560–1567.
[176] H. Witte, R. Hackert, W. Ilg, J. Biltzinger, N. Schilling, F. Biedermann, M. Jergas, H. Preuschoft, and M. Fischer. “Quadrupedal mammals as paragons forwalking machines”. In: International Symposium on Adaptive Motion of Animalsand Machines. 2000.
[177] D. Wollherr, M. Hardt, M. Buss, and O. von Stryk. “Actuator selection and hardware realization of a small and fast-moving, autonomous humanoid robot”. In:IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 3. IEEE.2002, pp. 2491–2496.
[178] T. Wortmann. “Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization”. In: Journal of Computational Design and Engineering 6.3 (2019), pp. 414–428.
[179] C. Wu, X.-J. Liu, L. Wang, and J. Wang. “Optimal design of spherical 5R parallel manipulators considering the motion/force transmissibility”. In: Journal ofMechanical Design 132.3 (2010).
[180] Q. Wu, C. Liu, J. Zhang, and Q. Chen. “Survey of locomotion control of leggedrobots inspired by biological concept”. In: Science in China Series F: InformationSciences 52.10 (2009), pp. 1715–1729.
[181] W. Xi, Y. Yesilevskiy, and C. D. Remy. “Selecting gaits for economical locomotion of legged robots”. In: The International Journal of Robotics Research 35.9 (2016),pp. 1140–1154.
[182] X. Xiong, F. Wörgötter, and P. Manoonpong. “Adaptive and energy efficientwalking in a hexapod robot under neuromechanical control and sensorimotorlearning”. In: IEEE transactions on cybernetics 46.11 (2015), pp. 2521–2534.
[183] H. Xu, T. Fu, P. Song, M. Zhou, C.-W. Fu, and N. J. Mitra. “Computational designand optimization of non-circular gears”. In: Computer Graphics Forum. Vol. 39. 2.Wiley Online Library. 2020, pp. 399–409.
[184] A. T. Yang. “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms”. PhD thesis. US: Columbia University, 1963.
[185] S. Yao, R. Liu, and Y.-a. Yao. “Design and analysis of a multi-mode mobilerobot based on Schatz linkages”. In: Mechanism and Machine Theory 169 (2022),p. 104651.
[186] Y. Yesilevskiy, Z. Gan, and C. David Remy. “Energy-optimal hopping in parallel and series elastic one-dimensional monopeds”. In: Journal of Mechanisms andRobotics 10.3 (2018), p. 031008.
[187] T. Yoshikawa. “Manipulability of robotic mechanisms”. In: Internation Journal ofRobotics Research. 4.2 (1985), pp. 3–9.
[188] Z. You. “Motion structures extend their reach”. In: Materials Today 10.12 (2007),pp. 52–57.
[189] Y. Yuan, C. Zheng, and S. Coros. “Computational design of transformables”. In:Computer Graphics Forum. Vol. 37. 8. Wiley Online Library. 2018, pp. 103–113.
[190] Y. Yun and Y. Li. “Optimal design of a 3-PUPU parallel robot with complianthinges for micromanipulation in a cubic workspace”. In: Robotics and ComputerIntegrated Manufacturing 27.6 (2011), pp. 977–985.
[191] C. Zhang and J. S. Dai. “Continuous static gait with twisting trunk of a metamorphic quadruped robot”. In: Mechanical Sciences 9.1 (2018), pp. 1–14.
[192] C. Zhang and J. Dai. “Trot gait with twisting trunk of a metamorphic quadrupedrobot”. In: Journal of Bionic Engineering 15.6 (2018), pp. 971–981.
[193] K. Zhang and J. S. Dai. “A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two”. In: Journalof Mechanisms and Robotics 6.2 (2014), p. 021007.
[194] A. Zhao, J. Xu, M. Konakovi´c-Lukovi´c, J. Hughes, A. Spielberg, D. Rus, and W.Matusik. “Robogrammar: graph grammar for terrain-optimized robot design”.In: ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–16.
[195] J.-S. Zhao, Z.-F. Yan, and L. Ye. “Design of planar four-bar linkage with n specified positions for a flapping wing robot”. In: Mechanism and Machine Theory 82(2014), pp. 33–55.
[196] W. Zhao, J. P. Queralta, and T. Westerlund. “Sim-to-real transfer in deep reinforcement learning for robotics: a survey”. In: 2020 IEEE symposium series oncomputational intelligence (SSCI). IEEE. 2020, pp. 737–744.
[197] C. Zheng, T. Sun, and X. Chen. “Deployable 3D linkages with collision avoidance”. In: Symposium on Computer Animation. Vol. 179. 2016, p. 188.
[198] W. Zhixing, Y. Hongying, T. Dewei, and L. Jiansheng. “Study on rigid-bodyguidance synthesis of planar linkage”. In: Mechanism and Machine Theory 37.7(2002), pp. 673–684.
[199] Y. Zhong, R. Wang, H. Feng, and Y. Chen. “Analysis and research of quadrupedrobot’s legs: A comprehensive review”. In: International Journal of AdvancedRobotic Systems 16.3 (2019), p. 1729881419844148.
[200] C. Zhou, B. Huang, and P. Fränti. “A review of motion planning algorithms forintelligent robots”. In: Journal of Intelligent Manufacturing 33.2 (2022), pp. 387–424.
[201] Y. Zhou, S. Sueda, W. Matusik, and A. Shamir. “Boxelization: Folding 3D objectsinto boxes”. In: ACM Transactions on Graphics (TOG) 33.4 (2014), pp. 1–8.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/833885
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
Gu YP. Computational Design and Energy-Efficient Optimization of Overconstrained Robotic Limbs[D]. 香港. 香港大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12050015-顾宇平-机械与能源工程(47493KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[顾宇平]的文章
百度学术
百度学术中相似的文章
[顾宇平]的文章
必应学术
必应学术中相似的文章
[顾宇平]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。