[1] B. Aalae, H. Abderrahmane, and M. Gael. “Computational design of an automotive twist beam”. In: Journal of Computational Design and Engineering 3.3 (2016),pp. 215–225.
[2] M. F. B. Abas, A. S. B. M. Rafie, H. B. Yusoff, and K. A. B. Ahmad. “Flappingwing micro-aerial-vehicle: Kinematics, membranes, and flapping mechanismsof ornithopter and insect flight”. In: Chinese Journal of Aeronautics 29.5 (2016),pp. 1159–1177.
[3] S. Acharyya and M. Mandal. “Performance of EAs for four-bar linkage synthesis”. In: Mechanism and Machine Theory 44.9 (2009), pp. 1784–1794.
[4] R. M. Alexander. “The gaits of bipedal and quadrupedal animals”. In: The International Journal of Robotics Research 3.2 (1984), pp. 49–59.
[5] H. Alt and M. Godau. “Computing the Fréchet distance between two polygonalcurves”. In: International Journal of Computational Geometry & Applications 5.01n02(1995), pp. 75–91.
[6] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. Brown, D. McMordie,U. Saranli, R. Full, and D. E. Koditschek. “Rhex: A biologically inspired hexapodrunner”. In: Autonomous Robots 11 (2001), pp. 207–213.
[7] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. “CasADi: asoftware framework for nonlinear optimization and optimal control”. In: Mathematical Programming Computation 11 (2019), pp. 1–36.
[8] E. K. Antonsson and J. Cagan. Formal engineering design synthesis. CambridgeUniversity Press, 2001.
[9] Z. Anvari, P. Ataei, and M. Tale Masouleh. “The collision-free workspace ofthe tripteron parallel robot based on a geometrical approach”. In: ComputationalKinematics: Proceedings of the 7th International Workshop on Computational Kinematics that was held at Futuroscope-Poitiers, France, in May 2017. Springer. 2018,pp. 357–364.
[10] P. Arena, L. Fortuna, M. Frasca, L. Patané, and M. Pavone. “Realization of aCNN-driven cockroach-inspired robot”. In: 2006 IEEE International Symposiumon Circuits and Systems. IEEE. 2006, 4–pp.
[11] P. Arm, R. Zenkl, P. Barton, L. Beglinger, A. Dietsche, L. Ferrazzini, E. Hampp, J.Hinder, C. Huber, D. Schaufelberger, et al. “Spacebok: A dynamic legged robotfor space exploration”. In: 2019 international conference on robotics and automation(ICRA). IEEE. 2019, pp. 6288–6294.
[12] M. Bächer, S. Coros, and B. Thomaszewski. “Linkedit: Interactive linkage editing using symbolic kinematics”. In: ACM Transactions on Graphics (TOG) 34.4(2015), pp. 1–8.
[13] S. Bai, Z. Li, and J. Angeles. “Exact path synthesis of RCCC linkages for a maximum of nine prescribed positions”. In: Journal of Mechanisms and Robotics 14.2(2022), p. 021011.
[14] A. T. Baisch, P. S. Sreetharan, and R. J. Wood. “Biologically-inspired locomotionof a 2g hexapod robot”. In: 2010 IEEE/RSJ international conference on intelligentrobots and systems. IEEE. 2010, pp. 5360–5365.
[15] J. E. Baker. “The Bennett, Goldberg and Myard linkages—in perspective”. In:Mechanism and Machine Theory 14.4 (1979), pp. 239–253.
[16] G. T. Bennett. “A New Mechanism”. In: Engineering(London) 76 (1903), pp. 777–778.
[17] G. Bharaj, S. Coros, B. Thomaszewski, J. Tompkin, B. Bickel, and H. Pfister.“Computational design of walking automata”. In: Proceedings of the 14th ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2015, pp. 93–100.
[18] P. Birkmeyer, K. Peterson, and R. S. Fearing. “DASH: A dynamic 16g hexapedalrobot”. In: 2009 IEEE/RSJ international conference on intelligent robots and systems.IEEE. 2009, pp. 2683–2689.
[19] P. Biswal and P. K. Mohanty. “Development of quadruped walking robots: Areview”. In: Ain Shams Engineering Journal 12.2 (2021), pp. 2017–2031.
[20] M. Bjelonic, N. Kottege, T. Homberger, P. Borges, P. Beckerle, and M. Chli.“Weaver: Hexapod robot for autonomous navigation on unstructured terrain”.In: Journal of Field Robotics 35.7 (2018), pp. 1063–1079.
[21] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim. “MITCheetah 3: Design and control of a robust, dynamic quadruped robot”. In: 2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.2018, pp. 2245–2252.
[22] W. Bosworth, S. Kim, and N. Hogan. “The MIT super mini cheetah: A small,low-cost quadrupedal robot for dynamic locomotion”. In: 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). 2015, pp. 1–8.
[23] J. C. Carvalho and T. R. Silvestre. “Motion analysis of a six-legged robot usingBennett’s linkage as leg”. In: Mechanics Based Design of Structures and Machines44.1-2 (2016), pp. 86–95.
[24] M. Ceccarelli and C. Lanni. “A multi-objective optimum design of general 3Rmanipulators for prescribed workspace limits”. In: Mechanism and machine theory39.2 (2004), pp. 119–132.
[25] J. J. Cervantes-Sánchez, L. Gracia, E. Alba-Ruiz, and J. M. Rico-Martínez. “Synthesis of a special RPSPR spatial linkage function generator for six precisionpoints”. In: Mechanism and machine theory 46.2 (2011), pp. 83–96.
[26] D. Ceylan, W. Li, N. J. Mitra, M. Agrawala, and M. Pauly. “Designing and fabricating mechanical automata from mocap sequences”. In: ACM Transactions onGraphics (TOG) 32.6 (2013), pp. 1–11.
[27] M. Chadwick, H. Kolvenbach, F. Dubois, H. F. Lau, and M. Hutter. “Vitruvio:An open-source leg design optimization toolbox for walking robots”. In: IEEERobotics and Automation Letters 5.4 (2020), pp. 6318–6325.
[28] X. Chai, X. Kang, D. Gan, H. Yu, and J. S. Dai. “Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary amongclassical linkages”. In: Mechanism and Machine Theory 156 (2021), p. 104133.
[29] F. Y. Chen. “Gripping mechanisms for industrial robots: an overview”. In: Mechanism and Machine Theory 17.5 (1982), pp. 299–311.
[30] Y. Chen and Z. You. “An extended Myard linkage and its derived 6R linkage”.In: Journal of Mechanical Design. 130.5 (2008), p. 052301.
[31] Y. Chen, C. Lu, J. Yan, J. Feng, and P. Sareh. “Intelligent computational designof scalene-faceted flat-foldable tessellations”. In: Journal of Computational Designand Engineering 9.5 (2022), pp. 1765–1774.
[32] Y. Cheng, P. Song, Y. Lu, W. J. J. Chew, and L. Liu. “Exact 3D path generationvia 3D cam-linkage mechanisms”. In: ACM Transactions on Graphics (TOG) 41.6(2022), pp. 1–13.
[33] Y. Cheng, Y. Sun, P. Song, and L. Liu. “Spatial-temporal motion control via composite cam-follower mechanisms”. In: ACM Transactions on Graphics (TOG) 40.6(2021), pp. 1–15.
[34] C. Chiang. “On the classification of spherical four-bar linkages”. In: Mechanismand Machine Theory 19.3 (1984), pp. 283–287.
[35] J.-W. Chung, I.-W. Park, and J.-H. Oh. “On the design and development of aquadruped robot platform”. In: Advanced Robotics 24.1-2 (2010), pp. 277–298.
[36] J.-F. Collard, P. Fisette, and P. Duysinx. “Contribution to the optimizationof closed-loop multibody systems: Application to parallel manipulators”. In:Multibody System Dynamics 13 (2005), pp. 69–84.
[37] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W.Matusik, and B. Bickel. “Computational design of mechanical characters”. In:ACM Transactions on Graphics (TOG) 32.4 (2013), pp. 1–12.
[38] A. Crespi, K. Karakasiliotis, A. Guignard, and A. J. Ijspeert. “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walkinggaits”. In: IEEE Transactions on Robotics 29.2 (2013), pp. 308–320.
[39] H. Cruse and C. Bartling. “Movement of joint angles in the legs of a walkinginsect, Carausius morosus”. In: Journal of Insect Physiology 41.9 (1995), pp. 761–771.
[40] H. Cruse, V. Dürr, M. Schilling, and J. Schmitz. “Principles of insect locomotion”.In: Spatial temporal patterns for action-oriented perception in roving robots (2009),pp. 43–96.
[41] H. Cruse, V. Dürr, J. Schmitz, and A. Schneider. “Control of hexapod walking inbiological systems”. In: Adaptive motion of animals and machines (2006), pp. 17–29.
[42] J. S. Dai, D. Wang, and L. Cui. “Orientation and workspace analysis of the multifingered metamorphic hand—Metahand”. In: IEEE Transactions on Robotics 25.4(2009), pp. 942–947.
[43] J. S. Dai, Z. Huang, and H. Lipkin. “Mobility of Overconstrained Parallel Mechanisms”. In: Journal of Mechanical Design 128.1 (Oct. 2004), pp. 220–229.
[44] J. Denavit and R. S. Hartenberg. “A kinematic notation for lower-pair mechanisms based on matrices”. In: Journal of Applied Mechanics 22.2 (1955), pp. 215–221.
[45] P. Diaconis, S. Holmes, and M. Shahshahani. “Sampling from a manifold”. In:Advances in modern statistical theory and applications: a Festschrift in honor of MorrisL. Eaton. Institute of Mathematical Statistics, 2013, pp. 102–125.
[46] K. M. Digumarti, C. Gehring, S. Coros, J. Hwangbo, and R. Siegwart. “Concurrent optimization of mechanical design and locomotion control of a leggedrobot”. In: Mobile Service Robotics. World Scientific, 2014, pp. 315–323.
[47] T. Dinev, C. Mastalli, V. Ivan, S. Tonneau, and S. Vijayakumar. “A versatile codesign approach for dynamic legged robots”. In: 2022 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 10343–10349.
[48] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park. “Representation-freemodel predictive control for dynamic motions in quadrupeds”. In: IEEE Transactions on Robotics 37.4 (2021), pp. 1154–1171.
[49] G. Fadini, T. Flayols, A. Del Prete, N. Mansard, and P. Souères. “Computationaldesign of energy-efficient legged robots: Optimizing for size and actuators”. In:2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021,pp. 9898–9904.
[50] S. Feng, Y. Gu, W. Guo, Y. Guo, F. Wan, J. Pan, and C. Song. “An overconstrainedrobotic leg with coaxial quasi-direct drives for omni-directional ground mobility”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).IEEE. 2021, pp. 11477–11484.
[51] G. Gabrielli. “What price speed? Specific power required for propulsion of vehicles”. In: Mech. Eng. (1950), pp. 775–781.
[52] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. MarínJiménez. “Automatic generation and detection of highly reliable fiducial markers under occlusion”. In: Pattern Recognition 47.6 (2014), pp. 2280–2292.
[53] G. Gogu. “Chebychev–Grübler–Kutzbach’s criterion for mobility calculation ofmulti-loop mechanisms revisited via theory of linear transformations”. In: European Journal of Mechanics-A/Solids 24.3 (2005), pp. 427–441.
[54] D. E. Golberg. “Genetic algorithms in search, optimization, and machine learning”. In: Addion wesley 1989.102 (1989), p. 36.
[55] M. Goldberg. “New five-bar and six-bar linkages in three dimensions”. In: Trans.ASME. 65 (1943), pp. 649–661.
[56] C. Gosselin and J. Angeles. “A global performance index for the kinematic optimization of robotic manipulators”. In: (1991).
[57] C. M. Gosselin. “The optimum design of robotic manipulators using dexterityindices”. In: Robotics and Autonomous systems 9.4 (1992), pp. 213–226.
[58] J. A. Grimes and J. W. Hurst. “The design of ATRIAS 1.0 a unique monopod,hopping robot”. In: Adaptive Mobile Robotics. World Scientific, 2012.
[59] Y. Gu, S. Feng, Y. Guo, F. Wan, J. S. Dai, J. Pan, and C. Song. “Overconstrainedcoaxial design of robotic legs with omni-directional locomotion”. In: Mechanismand Machine Theory 176 (2022), p. 105018.
[60] Y. Gu, Z. Wang, S. Feng, H. Sun, H. Lu, J. Pan, F. Wan, and C. Song. “Computational design towards energy efficient optimization in overconstrained roboticlimbs”. In: Journal of Computational Design and Engineering 10.5 (2023), pp. 1941–1956.
[61] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane. “Computationaldesign of robotic devices from high-level motion specifications”. In: IEEE Transactions on Robotics 34.5 (2018), pp. 1240–1251.
[62] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane. “Computational cooptimization of design parameters and motion trajectories for robotic systems”.In: The International Journal of Robotics Research 37.13-14 (2018), pp. 1521–1536.
[63] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane. “Task-based limb optimization for legged robots”. In: 2016 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS). IEEE. 2016, pp. 2062–2068.
[64] M. Hamann. “Line-symmetric motions with respect to reguli”. In: Mechanismand machine theory 46.7 (2011), pp. 960–974.
[65] A. Hamon and Y. Aoustin. “Cross four-bar linkage for the knees of a planarbipedal robot”. In: 2010 10th IEEE-RAS International Conference on HumanoidRobots. IEEE. 2010, pp. 379–384.
[66] N. Hansen, Y. Akimoto, and P. Baudis. CMA-ES/pycma on Github. Feb. 2019. URL:https://doi.org/10.5281/zenodo.2559634.
[67] N. Hansen, S. D. Müller, and P. Koumoutsakos. “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation(CMA-ES)”. In: Evolutionary computation 11.1 (2003), pp. 1–18.
[68] J. He and F. Gao. “Mechanism, actuation, perception, and control of highly dynamic multilegged robots: A review”. In: Chinese Journal of Mechanical Engineering 33 (2020), pp. 1–30.
[69] J. He and F. Gao. “Type synthesis for bionic quadruped walking robots”. In:Journal of Bionic Engineering 12.4 (2015), pp. 527–538.
[70] D. F. Hoyt, S. J. Wickler, D. J. Dutto, G. E. Catterfeld, and D. Johnsen. “What arethe relations between mechanics, gait parameters, and energetics in terrestriallocomotion?” In: Journal of Experimental Zoology Part A: Comparative ExperimentalBiology 305.11 (2006), pp. 912–922.
[71] H. Huang and B. Li. “Geometric design of a bio-inspired flapping wing mechanism based on bennett-derived 6R deployable mechanisms”. In: InternationalDesign Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 46377. 2014, V05BT08A042.
[72] H. Huang, Z. Deng, and B. Li. “Mobile assemblies of large deployable mechanisms”. In: Journal of Space Engineering 5.1 (2012), pp. 1–14.
[73] Y.-J. Huang, S.-Y. Chan, W.-C. Lin, and S.-Y. Chuang. “Making and animatingtransformable 3D models”. In: Computers & Graphics 54 (2016), pp. 127–134.
[74] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate, and J.Hurst. “Atrias: Design and validation of a tether-free 3d-capable spring-massbipedal robot”. In: The International Journal of Robotics Research 35.12 (2016),pp. 1497–1521.
[75] S. Hussain, P. K. Jamwal, and P. Van Vliet. “Design synthesis and optimizationof a 4-SPS intrinsically compliant parallel wrist rehabilitation robotic orthosis”.In: Journal of Computational Design and Engineering 8.6 (2021), pp. 1562–1575.
[76] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy, and R. Siegwart. “StarlETH: A compliant quadrupedal robot for fast, efficient, and versatilelocomotion”. In: Adaptive Mobile Robotics. World Scientific, 2012, pp. 483–490.
[77] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J.Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, et al. “Anymal-a highly mobile and dynamic quadrupedal robot”. In: 2016 IEEE/RSJ international conferenceon intelligent robots and systems (IROS). IEEE. 2016, pp. 38–44.
[78] H. Isakhani, N. Bellotto, Q. Fu, and S. Yue. “Generative design and fabricationof a locust-inspired gliding wing prototype for micro aerial robots”. In: Journalof Computational Design and Engineering 8.5 (2021), pp. 1191–1203.
[79] J. M. Kaldor, D. L. James, and S. Marschner. “Simulating knitted cloth at theyarn level”. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH ’08. New York, NY,USA: Association for Computing Machinery, 2008.
[80] S. Kalouche. “GOAT: A legged robot with 3D agility and virtual compliance”.In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE. 2017, pp. 4110–4117.
[81] B. Katz, J. Di Carlo, and S. Kim. “Mini cheetah: A platform for pushing the limitsof dynamic quadruped control”. In: 2019 international conference on robotics andautomation (ICRA). IEEE. 2019, pp. 6295–6301.
[82] N. Kau, A. Schultz, N. Ferrante, and P. Slade. “Stanford doggo: An open-source,quasi-direct-drive quadruped”. In: 2019 International conference on robotics andautomation (ICRA). IEEE. 2019, pp. 6309–6315.
[83] P. M. Kebria, S. Al-Wais, H. Abdi, and S. Nahavandi. “Kinematic and dynamicmodelling of UR5 manipulator”. In: 2016 IEEE international conference on systems,man, and cybernetics (SMC). IEEE. 2016, pp. 004229–004234.
[84] G. Kenneally, A. De, and D. E. Koditschek. “Design principles for a family ofdirect-drive legged robots”. In: IEEE Robotics and Automation Letters 1.2 (2016),pp. 900–907.
[85] M. M. Khan and C. Chen. “Design of a single cam single actuator multiloop eyeball mechanism”. In: 2018 IEEE-RAS 18th International Conference on HumanoidRobots (Humanoids). IEEE. 2018, pp. 1143–1149.
[86] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”.In: The international journal of robotics research 5.1 (1986), pp. 90–98.
[87] S.-G. Kim and J. Ryu. “New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators”. In: IEEE Transactions on Robotics and Automation 19.4 (2003), pp. 731–736.
[88] W. Kim, S. Lee, M. Kang, J. Han, and C. Han. “Energy-efficient gait pattern generation of the powered robotic exoskeleton using DME”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2010, pp. 2475–2480.
[89] G. K. Klute, J. M. Czerniecki, and B. Hannaford. “Artificial muscles: Actuators for biorobotic systems”. In: The International Journal of Robotics Research 21.4(2002), pp. 295–309.
[90] J. R. Koza. “Survey of genetic algorithms and genetic programming”. In: Wesconconference record. Western Periodicals Company. 1995, pp. 589–594.
[91] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T.Koolen, P. Marion, and R. Tedrake. “Optimization-based locomotion planning,estimation, and control design for the atlas humanoid robot”. In: Autonomousrobots 40 (2016), pp. 429–455.
[92] M. Lakkanna, G. Mohan Kumar, and R. Kadoli. “Computational design ofmould sprue for injection moulding thermoplastics”. In: Journal of ComputationalDesign and Engineering 3.1 (2016), pp. 37–52.
[93] J. Lee. “A study on the manipulability measures for robot manipulators”. In:Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot andSystems. Innovative Robotics for Real-World Applications. IROS’97. Vol. 3. IEEE.1997, pp. 1458–1465.
[94] T.-H. Lee, D. Choi, and W. Lee. “Computational design and workspace analysisof a passive motion-scaling mechanism based on pantograph for microsurgery”.In: Journal of Computational Design and Engineering 8.6 (2021), pp. 1446–1467.
[95] T. Li, C. Zhang, S. Wang, and J. S. Dai. “Jumping with Expandable Trunk ofa Metamorphic Quadruped Robot—The Origaker II”. In: Applied Sciences 9.9(2019), p. 1778.
[96] Z. Li, G. Nawratil, F. Rist, and M. Hensel. “Invertible paradoxic loop structuresfor transformable design”. In: Computer Graphics Forum. Vol. 39. 2. Wiley OnlineLibrary. 2020, pp. 261–275.
[97] P.-C. Lin, H. Komsuoglu, and D. E. Koditschek. “Toward a 6 DOF body stateestimator for a hexapod robot with dynamical gaits”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vol. 3. IEEE. 2004,pp. 2265–2270.
[98] S. Lin, H. Wang, J. Liu, and Y. Zhang. “Geometric method of spatial linkagessynthesis for function generation with three finite positions”. In: Journal of Mechanical Design 140.8 (2018), p. 082303.
[99] W. Liu, J. Sun, and J. Chu. “Synthesis of a spatial RRSS mechanism for pathgeneration using the numerical atlas method”. In: Journal of Mechanical Design142.1 (2020), p. 012303.
[100] P. Lucas, S. Oota, J. Conradt, and A. Knoll. “Development of the neuroroboticmouse”. In: 2019 IEEE International Conference on Cyborg and Bionic Systems(CBS). IEEE. 2019, pp. 299–304.
[101] M. J. Lum, J. Rosen, M. N. Sinanan, and B. Hannaford. “Kinematic optimization of a spherical mechanism for a minimally invasive surgical robot”. In: IEEEInternational Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.2004. Vol. 1. IEEE. 2004, pp. 829–834.
[102] M. Luneckas, T. Luneckas, J. Kriauˇciunas, D. Udris, D. Plonis, R. Damaševiˇcius, ¯and R. Maskeliunas. “Hexapod robot gait switching for energy consumption ¯and cost of transport management using heuristic algorithms”. In: Applied sciences 11.3 (2021), p. 1339.
[103] Z. Luo, J. Shang, G. Wei, and L. Ren. “A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage”. In: Mechanism and Machine Theory128 (2018), pp. 16–32.
[104] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.
[105] R. R. Ma and A. M. Dollar. “On dexterity and dexterous manipulation”. In: 201115th International Conference on Advanced Robotics (ICAR). IEEE. 2011, pp. 1–7.
[106] X. Ma, K. Zhang, and J. S. Dai. “Novel spherical-planar and Bennett-spherical6R metamorphic linkages with reconfigurable motion branches”. In: Mechanismand Machine Theory 128 (2018), pp. 628–647.
[107] A. Maitra and K. A. Dill. “Bacterial growth laws reflect the evolutionary importance of energy efficiency”. In: Proceedings of the National Academy of Sciences112.2 (2015), pp. 406–411.
[108] D. Mannhart, F. Dubois, K. Bodie, V. Klemm, A. Morra, and M. Hutter. “CAMIanalysis, design and realization of a force-compliant variable cam system”. In:2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020,pp. 850–856.
[109] R. T. Marler and J. S. Arora. “Function-transformation methods for multiobjective optimization”. In: Engineering Optimization 37.6 (2005), pp. 551–570.
[110] J. P. Merlet. “Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots”. In: Journal of Mechanical Design 128.1 (2006), pp. 199–206.
[111] J.-P. Merlet. Parallel robots. Vol. 128. Springer Science & Business Media, 2005.
[112] K. Mombaur. “Using optimization to create self-stable human-like running”. In:Robotica 27.3 (2009), pp. 321–330.
[113] G. Moreda, M. Muñoz-García, and P. Barreiro. “High voltage electrification oftractor and agricultural machinery–A review”. In: Energy Conversion and Management 115 (2016), pp. 117–131.
[114] F. E. Myard. “Contribution à la géométrie des systèmes articulés”. In: SociétéMathématique de France. 59 (1931), pp. 183–210.
[115] Y. Nakamura. Advanced robotics: redundancy and optimization. Addison-WesleyLongman Publishing Co., Inc., 1990.
[116] C. Nie, X. P. Corcho, and M. Spenko. “Robots on the move: Versatility and complexity in mobile robot locomotion”. In: IEEE Robotics & Automation Magazine20.4 (2013), pp. 72–82.
[117] G. Nishida, A. Bousseau, and D. G. Aliaga. “Multi-pose interactive linkagedesign”. In: Computer Graphics Forum. Vol. 38. 2. Wiley Online Library. 2019,pp. 277–289.
[118] NOKOV. Mars series. 2024, May 07. URL: https://en.nokov.com/products/motion-capture-cameras/Mars.html.
[119] H. Nollexa. “Linkage coupler curve synthesis: A historical review—III. Spatial synthesis and optimization”. In: Mechanism and Machine Theory 10.1 (1975),pp. 41–55.
[120] K. C. Olds. “Global indices for kinematic and force transmission performance inparallel robots”. In: IEEE Transactions on Robotics 31.2 (2015), pp. 494–500.
[121] Z. Pandilov and V. Dukovski. “Comparison of the Characteristics Between Serial and Parallel Robots”. In: Acta Technica Corviniensis-Bulletin of Engineering 7.1(2014).
[122] P. Y. Papalambros and D. J. Wilde. Principles of optimal design: modeling and computation. Cambridge university press, 2000.
[123] C. Paredis and P. K. Khosla. “An approach for mapping kinematic task specifications into a manipulator design”. In: (1991).
[124] H.-W. Park, P. M. Wensing, and S. Kim. “High-speed bounding with the MITCheetah 2: Control design and experiments”. In: The International Journal ofRobotics Research 36.2 (2017), pp. 167–192.
[125] J. Park, K.-S. Kim, and S. Kim. “Design of a cat-inspired robotic leg for fast running”. In: Advanced Robotics 28.23 (2014), pp. 1587–1598.
[126] S. Pellegrino. Deployable structures. Vol. 412. Springer, 2014.
[127] J. Phillips. Freedom in machinery: Introducing screw theory. Vol. 1. Cambridge University Press, 1984.
[128] I. Poulakakis, J. A. Smith, and M. Buehler. “On the dynamics of bounding andextensions: towards the half-bound and gallop gaits”. In: Adaptive motion of animals and machines (2006), pp. 79–88.
[129] C. Prahacs, A. Saudners, M. K. Smith, D. McMordie, and M. Buehler. “Towardslegged amphibious mobile robotics”. In: Proceedings of the Canadian EngineeringEducation Association (CEEA) (2004).
[130] M. H. Raibert. Legged robots that balance. MIT press, 1986.
[131] D. Rakita, B. Mutlu, and M. Gleicher. “RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion”. In: Robotics: Science and Systems. Vol. 14.Pittsburgh, PA. 2018, pp. 26–30.
[132] S. Rezazadeh, A. Abate, R. L. Hatton, and J. W. Hurst. “Robot Leg Design: AConstructive Framework”. In: IEEE Access 6 (2018), pp. 54369–54387.
[133] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Vol. 317. Springer Science& Business Media, 2009.
[134] W. Rodriguez, M. Last, A. Kandel, and H. Bunke. “3-dimensional curve similarity using string matching”. In: Robotics and Autonomous Systems 49.3-4 (2004),pp. 165–172.
[135] R. Roussel, M.-P. Cani, J.-C. Léon, and N. J. Mitra. “Exploratory design of mechanical devices with motion constraints”. In: Computers & Graphics 74 (2018),pp. 244–256.
[136] R. Roussel, M.-P. Cani, J.-C. Léon, and N. J. Mitra. “SPIROU: constrained exploration for mechanical motion design”. In: Proceedings of the 1st Annual ACMSymposium on Computational Fabrication. 2017, pp. 1–11.
[137] S. S. Roy and D. K. Pratihar. “Effects of turning gait parameters on energyconsumption and stability of a six-legged walking robot”. In: Robotics and Autonomous Systems 60.1 (2012), pp. 72–82.
[138] F. Ruppert and A. Badri-Spröwitz. “Learning plastic matching of robot dynamics in closed-loop central pattern generators”. In: Nature Machine Intelligence 4.7(2022), pp. 652–660.
[139] M. Russo et al. “Kinematic analysis and multi-objective optimization of a 3-UPRparallel mechanism for a robotic leg”. In: Mechanism and Machine Theory. 120(2018), pp. 192–202.
[140] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R.Hadsell, and P. Battaglia. “Graph networks as learnable physics engines forinference and control”. In: International Conference on Machine Learning. PMLR.2018, pp. 4470–4479.
[141] J. Santiago-Prowald and H. Baier. “Advances in deployable structures and surfaces for large apertures in space”. In: CEAS Space Journal. 5 (2013), pp. 89–115.
[142] U. Saranli, M. Buehler, and D. E. Koditschek. “Design, modeling and preliminary control of a compliant hexapod robot”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 3. IEEE. 2000, pp. 2589–2596.
[143] U. Saranli, M. Buehler, and D. E. Koditschek. “RHex: A simple and highly mobile hexapod robot”. In: The International Journal of Robotics Research 20.7 (2001),pp. 616–631.
[144] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter. “Jointly learning to construct and control agents using deep reinforcement learning”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 9798–9805.
[145] L. Sciavicco and B. Siciliano. Modelling and control of robot manipulators. SpringerScience & Business Media, 2001.
[146] H.-C. Seherr-Thoss, F. Schmelz, and E. Aucktor. Universal joints and driveshafts:analysis, design, applications. Springer Science & Business Media, 2006.
[147] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim. “Design principles for highly efficient quadrupeds and implementation on the MIT Cheetahrobot”. In: 2013 IEEE International Conference on Robotics and Automation. IEEE.2013, pp. 3307–3312.
[148] M. A. Sharbafi and A. Seyfarth. Bioinspired legged locomotion: models, concepts,control and applications. Butterworth-Heinemann, 2017.
[149] Q. Shi, J. Gao, S. Wang, X. Quan, G. Jia, Q. Huang, and T. Fukuda. “Developmentof a Small-Sized Quadruped Robotic Rat Capable of Multimodal Motions”. In:IEEE Transactions on Robotics (2022).
[150] S. Shin, D. Shin, and N. Kang. “Topology optimization via machine learning anddeep learning: A review”. In: Journal of Computational Design and Engineering 10.4(2023), pp. 1736–1766.
[151] O. Sigmund and K. Maute. “Topology optimization approaches: A comparativereview”. In: Structural and multidisciplinary optimization 48.6 (2013), pp. 1031–1055.
[152] M. F. Silva. “Quadruped robot optimization using a genetic algorithm”. In: FieldRobotics. World Scientific, 2012, pp. 782–789.
[153] M. F. Silva and J. T. Machado. “A literature review on the optimization of leggedrobots”. In: Journal of Vibration and Control 18.12 (2012), pp. 1753–1767.
[154] K. Sims. “Evolving virtual creatures”. In: Proceedings of the 21st annual conferenceon Computer graphics and interactive techniques. 1994, pp. 15–22.
[155] C. Song and Y. Chen. “A family of mixed double-Goldberg 6R linkages”. In:Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.468.2139 (2012), pp. 871–890.
[156] C. Song, Y. Chen, and I. Chen. “Kinematic study of the original and revised general line-symmetric bricard 6r linkages”. In: Journal of Mechanisms and Robotics.6.3 (2014), pp. 52–68.
[157] C. Song, H. Feng, Y. Chen, I. Chen, and R. Kang. “Reconfigurable mechanismgenerated from the network of Bennett linkages”. In: Mechanism and MachineTheory. 88 (2015), pp. 49–62.
[158] Z. Song, Z. Luo, G. Wei, and J. Shang. “A portable six-wheeled mobile robotwith reconfigurable body and self-adaptable obstacle-climbing mechanisms”.In: Journal of Mechanisms and Robotics (2022), pp. 1–39.
[159] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and A. J. Ijspeert.“Towards dynamic trot gait locomotion: Design, control, and experiments withCheetah-cub, a compliant quadruped robot”. In: The International Journal ofRobotics Research 32.8 (2013), pp. 932–950.
[160] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V.Vanhoucke. “Sim-to-real: Learning agile locomotion for quadruped robots”. In:arXiv preprint arXiv:1804.10332 (2018).
[161] N. M. Tanner et al. On becoming human. CUP Archive, 1981.
[162] B. Thomaszewski, S. Coros, D. Gauge, V. Megaro, E. Grinspun, and M. Gross.“Computational design of linkage-based characters”. In: ACM Transactions onGraphics (TOG) 33.4 (2014), pp. 1–9.
[163] D. J. Todd. Walking machines: an introduction to legged robots. Springer Science &Business Media, 2013.
[164] Unitree Robotics. A1. 2023, April 30. URL: https://www.unitree.com/a1/.
[165] E. Van Henten, D. Van’t Slot, C. Hol, and L. Van Willigenburg. “Optimal manipulator design for a cucumber harvesting robot”. In: Computers and electronics inagriculture 65.2 (2009), pp. 247–257.
[166] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filterline-search algorithm for large-scale nonlinear programming”. In: Mathematicalprogramming 106 (2006), pp. 25–57.
[167] K. J. Waldron, G. L. Kinzel, and S. K. Agrawal. Kinematics, dynamics, and designof machinery. John Wiley & Sons, 2016.
[168] K. Waldron. “A family of overconstrained linkages”. In: Journal of Mechanisms2.2 (1967), pp. 201–211.
[169] K. Wampler and Z. Popovi´c. “Optimal gait and form for animal locomotion”.In: ACM Transactions on Graphics (TOG) 28.3 (2009), pp. 1–8.
[170] W. Wang, Z. Han, J. Pei, G. Pavesi, X. Gong, and S. Yuan. “Energy efficiencyoptimization of water pump based on heuristic algorithm and computationalfluid dynamics”. In: Journal of Computational Design and Engineering 10.1 (2023),pp. 382–397.
[171] R. A. Watson, S. G. Ficici, and J. B. Pollack. “Embodied evolution: Distributingan evolutionary algorithm in a population of robots”. In: Robotics and autonomoussystems 39.1 (2002), pp. 1–18.
[172] G. Wei and J. S. Dai. “A spatial eight-bar linkage and its association with the deployable platonic mechanisms”. In: Journal of Mechanisms and Robotics 6.2 (2014),p. 021010.
[173] G. Wei and J. S. Dai. “Origami-inspired integrated planar-spherical overconstrained mechanisms”. In: Journal of Mechanical Design 136.5 (2014), p. 051003.
[174] K. Weinmeister, P. Eckert, H. Witte, and A.-J. Ijspeert. “Cheetah-cub-S: Steeringof a quadruped robot using trunk motion”. In: 2015 IEEE international symposiumon safety, security, and rescue robotics (SSRR). IEEE. 2015, pp. 1–6.
[175] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli. “Gait and trajectoryoptimization for legged systems through phase-based end-effector parameterization”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 1560–1567.
[176] H. Witte, R. Hackert, W. Ilg, J. Biltzinger, N. Schilling, F. Biedermann, M. Jergas, H. Preuschoft, and M. Fischer. “Quadrupedal mammals as paragons forwalking machines”. In: International Symposium on Adaptive Motion of Animalsand Machines. 2000.
[177] D. Wollherr, M. Hardt, M. Buss, and O. von Stryk. “Actuator selection and hardware realization of a small and fast-moving, autonomous humanoid robot”. In:IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 3. IEEE.2002, pp. 2491–2496.
[178] T. Wortmann. “Genetic evolution vs. function approximation: Benchmarking algorithms for architectural design optimization”. In: Journal of Computational Design and Engineering 6.3 (2019), pp. 414–428.
[179] C. Wu, X.-J. Liu, L. Wang, and J. Wang. “Optimal design of spherical 5R parallel manipulators considering the motion/force transmissibility”. In: Journal ofMechanical Design 132.3 (2010).
[180] Q. Wu, C. Liu, J. Zhang, and Q. Chen. “Survey of locomotion control of leggedrobots inspired by biological concept”. In: Science in China Series F: InformationSciences 52.10 (2009), pp. 1715–1729.
[181] W. Xi, Y. Yesilevskiy, and C. D. Remy. “Selecting gaits for economical locomotion of legged robots”. In: The International Journal of Robotics Research 35.9 (2016),pp. 1140–1154.
[182] X. Xiong, F. Wörgötter, and P. Manoonpong. “Adaptive and energy efficientwalking in a hexapod robot under neuromechanical control and sensorimotorlearning”. In: IEEE transactions on cybernetics 46.11 (2015), pp. 2521–2534.
[183] H. Xu, T. Fu, P. Song, M. Zhou, C.-W. Fu, and N. J. Mitra. “Computational designand optimization of non-circular gears”. In: Computer Graphics Forum. Vol. 39. 2.Wiley Online Library. 2020, pp. 399–409.
[184] A. T. Yang. “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms”. PhD thesis. US: Columbia University, 1963.
[185] S. Yao, R. Liu, and Y.-a. Yao. “Design and analysis of a multi-mode mobilerobot based on Schatz linkages”. In: Mechanism and Machine Theory 169 (2022),p. 104651.
[186] Y. Yesilevskiy, Z. Gan, and C. David Remy. “Energy-optimal hopping in parallel and series elastic one-dimensional monopeds”. In: Journal of Mechanisms andRobotics 10.3 (2018), p. 031008.
[187] T. Yoshikawa. “Manipulability of robotic mechanisms”. In: Internation Journal ofRobotics Research. 4.2 (1985), pp. 3–9.
[188] Z. You. “Motion structures extend their reach”. In: Materials Today 10.12 (2007),pp. 52–57.
[189] Y. Yuan, C. Zheng, and S. Coros. “Computational design of transformables”. In:Computer Graphics Forum. Vol. 37. 8. Wiley Online Library. 2018, pp. 103–113.
[190] Y. Yun and Y. Li. “Optimal design of a 3-PUPU parallel robot with complianthinges for micromanipulation in a cubic workspace”. In: Robotics and ComputerIntegrated Manufacturing 27.6 (2011), pp. 977–985.
[191] C. Zhang and J. S. Dai. “Continuous static gait with twisting trunk of a metamorphic quadruped robot”. In: Mechanical Sciences 9.1 (2018), pp. 1–14.
[192] C. Zhang and J. Dai. “Trot gait with twisting trunk of a metamorphic quadrupedrobot”. In: Journal of Bionic Engineering 15.6 (2018), pp. 971–981.
[193] K. Zhang and J. S. Dai. “A kirigami-inspired 8R linkage and its evolved overconstrained 6R linkages with the rotational symmetry of order two”. In: Journalof Mechanisms and Robotics 6.2 (2014), p. 021007.
[194] A. Zhao, J. Xu, M. Konakovi´c-Lukovi´c, J. Hughes, A. Spielberg, D. Rus, and W.Matusik. “Robogrammar: graph grammar for terrain-optimized robot design”.In: ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–16.
[195] J.-S. Zhao, Z.-F. Yan, and L. Ye. “Design of planar four-bar linkage with n specified positions for a flapping wing robot”. In: Mechanism and Machine Theory 82(2014), pp. 33–55.
[196] W. Zhao, J. P. Queralta, and T. Westerlund. “Sim-to-real transfer in deep reinforcement learning for robotics: a survey”. In: 2020 IEEE symposium series oncomputational intelligence (SSCI). IEEE. 2020, pp. 737–744.
[197] C. Zheng, T. Sun, and X. Chen. “Deployable 3D linkages with collision avoidance”. In: Symposium on Computer Animation. Vol. 179. 2016, p. 188.
[198] W. Zhixing, Y. Hongying, T. Dewei, and L. Jiansheng. “Study on rigid-bodyguidance synthesis of planar linkage”. In: Mechanism and Machine Theory 37.7(2002), pp. 673–684.
[199] Y. Zhong, R. Wang, H. Feng, and Y. Chen. “Analysis and research of quadrupedrobot’s legs: A comprehensive review”. In: International Journal of AdvancedRobotic Systems 16.3 (2019), p. 1729881419844148.
[200] C. Zhou, B. Huang, and P. Fränti. “A review of motion planning algorithms forintelligent robots”. In: Journal of Intelligent Manufacturing 33.2 (2022), pp. 387–424.
[201] Y. Zhou, S. Sueda, W. Matusik, and A. Shamir. “Boxelization: Folding 3D objectsinto boxes”. In: ACM Transactions on Graphics (TOG) 33.4 (2014), pp. 1–8.
修改评论