中文版 | English
题名

磁性拓扑材料的电子结构研究

其他题名
ELECTRONIC STRUCTURE STUDY OF MAGNETIC TOPOLOGICAL MATERIALS
姓名
姓名拼音
HAO Yujie
学号
11849469
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
刘畅
导师单位
物理系
论文答辩日期
2024-04-15
论文提交日期
2024-09-30
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

磁性拓扑材料的研究是当前凝聚态物理领域中备受关注的重要课题之一。 磁性拓扑材料可以分为两大类:磁性掺杂拓扑材料和本征磁性拓扑材料。它们 具有引人注目的量子性质和广阔的应用前景。这些新奇的量子性质往往与电子 结构息息相关,因此深入研究磁性拓扑材料的电子结构将有助于揭示新奇的物 理现象,探索新颖的量子态,深化对物理学的理解,并为未来量子计算和自旋电 子学领域上的应用开辟新的可能性。本文首先介绍了拓扑概念在凝聚态物理领 域的发展历程;其次回顾了磁性拓扑材料的研究现状;然后根据研究现状总结了 现存问题:本征磁性拓扑材料的能带表征问题、磁性拓扑材料的设计与合成问题 和磁性掺杂对拓扑材料的性质调控问题;最后基于以上问题展开研究。在各项研 究中均采用了角分辨光电子能谱技术(Angle-resolved Photoemission Spectroscopy, ARPES,一种基于光电效应探究固体电子结构的技术)对材料的电子结构进行 表征。下面介绍本论文的主要研究。 (1)本征磁性拓扑绝缘体 MnBi2Te4 的表面态研究:MnBi2Te4 作为首个本征 反铁磁拓扑绝缘体,其电子结构的测量结果具有争议。早期的文献报道,通过 ARPES 观测到 MnBi2Te4 表面态存在与理论计算相当的磁能隙。但是,该能隙 在高温顺磁相中依然存在,这与理论预期不符。为深入探究这一问题,本文使 用高动量-高能量分辨的激光 ARPES 测量其电子结构,结果显示 Γ 点处存在无 能隙的 Dirac 型能带。通过温度依赖实验,确定了该 Dirac 型能带在反铁磁相和 顺磁相中均未打开能隙。通过变光子能量的研究,确定了这种无能隙 Dirac 型 能带是表面态,证明了此前报道的有能隙表面态实为 MnBi2Te4 的体态能带。通 过表面扰动实验,说明了 MnBi2Te4 的表面态类似非磁性拓扑绝缘体的表面态, 都具有鲁棒性。此外,通过自旋分辨 ARPES 实验,揭示了 MnBi2Te4 的表面态呈 现“刺猬型”自旋纹理。最后,通过结合理论计算与实验结果,提出了 MnBi2Te4 的无能隙 Dirac 型表面态是由样品表面的磁无序引起的可能性。首次在反铁磁 拓扑材料中观测到无能隙表面态,这一发现改变了人们对拓扑量子态和对称保 护机制的传统认知,揭示了反铁磁拓扑材料中可能存在的新物理机制。 (2)本征磁性拓扑半金属候选材料 V3S4 的合成与其电子结构受自旋轨道 耦合作用影响大小的研究:自旋轨道耦合作用是理论计算电子结构时的重要参 数。它能够在保持时间反演对称性下引起能带反转,从而导致非平庸的拓扑性质。然而,自旋轨道耦合作用通常在含有高原子序数元素(如 Bi、Pb、Hg 等) 的材料中才显著,这限制了拓扑材料的设计。理论计算表明,V3S4(其单晶未 曾被合成过)是一种磁性拓扑半金属,并且自旋轨道耦合对其电子结构具有显 著影响。第一性原理计算表明,在不考虑自旋轨道耦合的情况下,在 V3S4 中同 时存在第二类 Dirac 半金属态和拓扑节线半金属态;考虑自旋轨道耦合作用后, 第二类 Dirac 点处打开能隙,拓扑节线消失。为了验证V3S4 的电子结构是否与 理论计算一致,本文通过 ARPES 实验,确定了 V3S4 在布里渊区中 Γ-Y 高对称 线上的第二类 Dirac 锥打开了约 120 meV 的能隙;在 I-Z-I 高对称线上呈现节线 消失后的能带结构。此实验,证明了 V3S4 的实际能带结构与考虑自旋轨道耦 合作用计算的能带结构一致。最后,通过结合理论计算与实验结果,揭示了自 旋轨道耦合作用对由低原子序数元素构成的 V3S4 材料的能带结构有显著影响, 这一发现将有助于发现更多由低原子序数元素组成的拓扑材料。 (3)磁性掺杂调控拓扑半金属 La1−xCexBi 中极大磁阻效应的研究:极大磁 阻(XMR)现象已在许多拓扑材料中被观测到,但其机制尚无定论。为探究 XMR 效应的本质机理,首先通过助熔剂法生长了不同掺杂浓度的 La1−xCexBi单晶。 随后,通过测量其输运性质,发现了随着 Ce 掺杂量的增加,La1−xCexBi 体系中 的 XMR 现象逐渐被抑制;在 12 T 磁场和 2 K 温度下,La1−xCexBi(x >0.09)的 磁阻值小于 103%(通常 XMR 效应的磁阻大于 103%)。通过拟合纵向电导率和 霍尔电导率,确定了在 XMR 效应被抑制的 La0.88Ce0.12Bi 中,电子-空穴载流子 浓度依然补偿且迁移率依然较高,这表明了电子-空穴补偿和高迁移率并非实现 XMR 效应的充分条件。通过对比未掺杂的 LaBi 和高掺杂的 La0.7Ce0.3Bi 单晶的 ARPES 实验结果,确定了掺杂前后费米面的位置没有移动,表面态没有打开能 隙,且 d-p 轨道杂化等特征能带结构依然存在,这表明 XMR 效应与费米面附 近的电子结构无直接关联。此项研究为理解 XMR 效应的起源提供了重要约束 条件,并为进一步探索 XMR 效应的起源提供了新的研究方向。

其他摘要

Research on magnetic topological materials is currently one of the most prominent topics in condensed matter physics. These materials can be divided into two categories: magnetic-doped topological materials and intrinsic magnetic topological materials. They exhibit intriguing quantum properties and have broad application potential. These novel quantum properties are often closely related to electronic structures; therefore, in-depth studies of the electronic structures of magnetic topological materials are essential for uncovering new physical phenomena, exploring novel quantum states, deepening our understanding of physics, and opening up new possibilities for future applications in quantum computing and spintronics. This thesis begins with an introduction to the development of topological concept in condensed matter physics. It then reviews the current research status of magnetic topological materials and summarizes existing issues, including the challenges of band characterization in intrinsic magnetic topological materials, the difffculties in designing and synthesizing magnetic topological materials, and the control of topological properties through magnetic doping. The study is conducted with a focus on these issues. Throughout the research, Angle-resolved Photoemission Spectroscopy (ARPES), a technique based on the photoelectric effect used to probe the electronic structure of solids, is employed to measure the electronic structures of the materials. The main research objectives of this thesis are outlined below. (1) Study on the Surface States of the Intrinsic Magnetic Topological Insulator MnBi2Te4:MnBi2Te4 is the ffrst known intrinsic antiferromagnetic topological insulator, yet its electronic structure has not been systematically characterized, and there remains controversy over the measurement results of its surface states. Early literature suggested that an energy gap consistent with the theory was observed in the surface states of MnBi2Te4 using ARPES. However, this gap persists in the high-temperature paramagnetic phase, contradicting theoretical expectations. To investigate this further, high momentum and high energy resolution laser ARPES were employed to measure its electronic structure. The results revealed a gapless Dirac-like band at the Γ point. Temperature-dependent experiments conffrmed that this Dirac-like band does not open a gap in either the antiferromagnetic or paramagnetic phases. Studies with various photon energies conffrmed that this gapless Dirac-like band is indeed a surface state, demonstrating that the previously reported gapped surface state was actually a bulk band of MnBi2Te4. Surface perturbation experiments showed that the surface states of MnBi2Te4 exhibit topological protection robustness similar to non-magnetic topological insulators. Moreover, spin-resolved ARPES experiments revealed a ”hedgehog-like” spin texture for these surface states. Combining theoretical calculations with experimental results, it was proposed that the gapless Dirac-like surface state of MnBi2Te4 is due to magnetic disorder on the sample surface. This observation of a gapless surface state in an antiferromagnetic topological material refreshes conventional understandings of topological quantum states and symmetry protection mechanisms, revealing potential new physical mechanisms in antiferromagnetic topological materials. (2) Synthesis and Spin-Orbit Coupling Inffuence on the Electronic Structure of the Intrinsic Magnetic Topological Semimetal Candidate V3S4:Spin-orbit coupling effect is a crucial factor in topological materials. As it can induce band inversion under time-reversal symmetry, leading to non-trivial topological properties. However, spin-orbit coupling effect is typically signiffcant only in materials composed of high-Z elements (such as Bi, Pb, Hg, etc.), limiting the design of topological materials. Theoretical calculationssuggest that V3S4 (which has not yet been synthesized as a single crystal) is a magnetic topological semimetal, and spin-orbit coupling effect has a substantial impact on its electronic structure. First-principles calculations indicate that without spin-orbit coupling effect, both type-II Dirac semimetal state and topological nodal-line semimetal state exists in V3S4. When spin-orbit coupling effect is considered, the type-II Dirac point opens a gap, and the topological nodal line disappears. To verify whether the electronic structure of V3S4 is consistent with theoretical calculations, ARPES experiments had been conducted on this material. The result shows that the type-II Dirac cone in V3S4 opens a gap of about 120 meV along the Γ-Y high-symmetry line in the Brillouin zone, and no nodal lines are observed along the I-Z-I high-symmetry line. This conffrms that the actual band structure of V3S4 aligns with the theoretical predictions when SOC is considered. Combining theoretical calculations with experimental results, it is revealed that spin-orbit coupling effect signiffcantly affects the band structure of V3S4, a even though it is composed of low-Z elements. This ffnding could aid in discovering more topological materials made from low-Z elements. (3) Study on the Extremely Large Magnetoresistance Effect in the Topological Semimetal La1−xCexBi Tuned by Magnetic Doping:The extremely large magnetoresistance (XMR) phenomenon has been observed in many topological materials, but its mechanism remains unresolved. To explore the intrinsic mechanism of the XMR effect, single crystals of La1−xCexBi with varying doping concentrations were grown using the ffux method. Systematic measurements of their transport properties showed that with increasing Ce doping, the XMR phenomenon in the La1−xCexBi system is gradually suppressed. At a magnetic ffeld of 12 T and a temperature of 2 K, the magnetoresistance value of La1−xCexBi (x > 0.09) is less than 103% (where typically, magnetoresistance values for XMR effects are greater than 103%). Fitting the transverse resistivity and Hall resistivity determined that in La0.88Ce0.12Bi, where XMR is suppressed, electron-hole compensation still exists, and mobility remains high, indicating that electron-hole compensation and high mobility are not sufffcient conditions for XMR. A comparison of ARPES results from undoped LaBi and highly doped La0.7Ce0.3Bi single crystals conffrmed that the Fermi level does not shift, no gap opens in the surface states, and characteristic band structures such as d-p  orbital hybridization remain, suggesting that the XMR phenomenon is not directly related to the electronic structure near the Fermi level. This study provides important constraints for understanding the origin of the XMR effect and offers new directions for further exploration of its physical origins.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2024-06
参考文献列表

[1] Landau L D, Lifshitz E M. Statistical Physics: Volume 5 : Vol 5[M]. [S.l.] : Elsevier,2013.
[2] Klitzing K v, Dorda G, Pepper M. New method for high-accuracy determination ofthe ffne-structure constant based on quantized Hall resistance[J]. Physical reviewletters, 1980, 45(6): 494.
[3] Laughlin R B. Quantized Hall conductivity in two dimensions[J]. Physical ReviewB, 1981, 23(10): 5632.
[4] Tsui D C, Stormer H L, Gossard A C. Two-dimensional magnetotransport in theextreme quantum limit[J]. Physical Review Letters, 1982, 48(22): 1559.
[5] Laughlin R B. Anomalous quantum Hall effect: an incompressible quantum ffuidwith fractionally charged excitations[J]. Physical Review Letters, 1983, 50(18) :1395.
[6] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance ina two-dimensional periodic potential[J]. Physical review letters, 1982, 49(6) : 405.
[7] Simon B. Holonomy, the quantum adiabatic theorem, and Berry’s phase[J]. Physical Review Letters, 1983, 51(24): 2167.
[8] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedingsof the Royal Society of London. A. Mathematical and Physical Sciences, 1984,392(1802): 45-57.
[9] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical reviewletters, 2005, 95(22): 226801.
[10] Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect[J].Physical review letters, 2005, 95(14): 146802.
[11] Bernevig B A, Hughes T L, Zhang S-C. Quantum spin Hall effect and topologicalphase transition in HgTe quantum wells[J]. science, 2006, 314(5806) : 1757-1761.
[12] Bernevig B A, Zhang S-C. Quantum spin Hall effect[J]. Physical review letters,2006, 96(10): 106802.
[13] Fu L, Kane C L. Time reversal polarization and a Z2 adiabatic spin pump[J]. Physical Review B, 2006, 74(19): 195312.
[14] Konig M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTequantum wells[J]. Science, 2007, 318(5851): 766-770.
[15] Haldane F D M. Model for a quantum Hall effect without Landau levels:Condensed-matter realization of the” parity anomaly”[J]. Physical review letters,1988, 61(18): 2015.
[16] Yu R, Zhang W, Zhang H-J, et al. Quantized anomalous Hall effect in magnetictopological insulators[J]. science, 2010, 329(5987): 61-64.
[17] Chang C-Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013,340(6129): 167-170.
[18] Fu L, Kane C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302.
[19] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions[J]. Physicalreview letters, 2007, 98(10): 106803.
[20] Qi X-L, Hughes T L, Zhang S-C. Topological ffeld theory of time-reversal invariantinsulators[J]. Physical Review B, 2008, 78(19): 195424.
[21] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spinHall phase[J]. Nature, 2008, 452(7190): 970-974.
[22] Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 andSb2Te3 with a single Dirac cone on the surface[J]. Nature physics, 2009, 5(6) : 438-442.
[23] Chen Y, Analytis J G, Chu J-H, et al. Experimental realization of a threedimensional topological insulator, Bi2Te3[J]. science, 2009, 325(5937) : 178-181.
[24] Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helicalDirac transport regime[J]. Nature, 2009, 460(7259): 1101-1105.
[25] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 2007, 75(12): 121306.
[26] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator classwith a single Dirac cone on the surface[J]. Nature physics, 2009, 5(6): 398-402.
[27] Roy R. Topological phases and the quantum spin Hall effect in three dimensions[J].Physical Review B, 2009, 79(19): 195322.
[28] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of modernphysics, 2010, 82(4): 3045.
[29] Qi X-L, Zhang S-C. Topological insulators and superconductors[J]. Reviews ofmodern physics, 2011, 83(4): 1057.
[30] Chang C-Z, Tang P, Wang Y-L, et al. Chemical-potential-dependent gap opening atthe Dirac surface states of Bi2Se3 induced by aggregated substitutional Cr atoms[J].Physical review letters, 2014, 112(5): 056801.
[31] Ou Y, Liu C, Jiang G, et al. Enhancing the quantum anomalous Hall effect bymagnetic codoping in a topological insulator[J]. Advanced materials, 2018, 30(1) :1703062.
[32] Mogi M, Yoshimi R, Tsukazaki A, et al. Magnetic modulation doping in topologicalinsulators toward higher-temperature quantum anomalous Hall effect[J]. AppliedPhysics Letters, 2015, 107(18).
[33] Katmis F, Lauter V, Nogueira F S, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling[J]. Nature, 2016, 533(7604): 513-516.
[34] Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and observation ofan antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[35] Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waalslayered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[36] Otrokov M, Rusinov I P, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 fflms[J]. Physicalreview letters, 2019, 122(10): 107202.
[37] Aliev Z S, Amiraslanov I R, Nasonova D I, et al. Novel ternary layered manganesebismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J].Journal of Alloys and Compounds, 2019, 789 : 443-450.
[38] Gong Y, Guo J, Li J, et al. Experimental realization of an intrinsic magnetic topological insulator[J]. Chinese Physics Letters, 2019, 36(7): 076801.
[39] Zeugner A, Nietschke F, Wolter A U, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4[J]. Chemistry of Materials, 2019,31(8): 2795-2806.
[40] Vidal R, Bentmann H, Peixoto T, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001)[J]. Physical Review B, 2019,100(12): 121104.
[41] Lee S H, Zhu Y, Wang Y, et al. Spin scattering and noncollinear spin structureinduced intrinsic anomalous Hall effect in antiferromagnetic topological insulatorMnBi2Te4[J]. Physical Review Research, 2019, 1(1) : 012011.
[42] Hao Y-J, Liu P, Feng Y, et al. Gapless surface Dirac cone in antiferromagnetictopological insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4) : 041038.
[43] Li H, Gao S-Y, Duan S-F, et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4):041039.
[44] Chen Y, Xu L, Li J, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review X,2019, 9(4): 041040.
[45] Swatek P, Wu Y, Wang L-L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2020, 101(16) :161109.
[46] Xu Y, Song Z, Wang Z, et al. Higher-order topology of the axion insulatorEuSn2As2[J]. Physical review letters, 2019, 122(25): 256402.
[47] Deng Y, Yu Y, Shi M Z, et al. Quantum anomalous Hall effect in intrinsic magnetictopological insulator MnBi2Te4[J]. Science, 2020, 367(6480) : 895-900.
[48] Liu C, Wang Y, Li H, et al. Robust axion insulator and Chern insulator phasesin a two-dimensional antiferromagnetic topological insulator[J]. Nature materials,2020, 19(5): 522-527.
[49] Serlin M, Tschirhart C, Polshyn H, et al. Intrinsic quantized anomalous Hall effectin a moiré heterostructure[J]. Science, 2020, 367(6480): 900-903.
[50] Li T, Jiang S, Shen B, et al. Quantum anomalous Hall effect from intertwined moirébands[J]. Nature, 2021, 600(7890): 641-646.
[51] Fu L. Topological crystalline insulators[J]. Physical review letters, 2011, 106(10) :106802.
[52] Ando Y, Fu L. Topological crystalline insulators and topological superconductors:From concepts to materials[J]. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 361-381.
[53] Hsieh T H, Lin H, Liu J, et al. Topological crystalline insulators in the SnTe materialclass[J]. Nature communications, 2012, 3(1): 982.
[54] Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystallineinsulator in SnTe[J]. Nature Physics, 2012, 8(11): 800-803.
[55] Xu S-Y, Liu C, Alidoust N, et al. Observation of a topological crystalline insulatorphase and topological phase transition in Pb1−xSnxTe[J]. Nature communications,2012, 3(1): 1192.
[56] Dziawa P, Kowalski B, Dybko K, et al. Topological crystalline insulator states inPb1−xSnxTe[J]. Nature materials, 2012, 11(12): 1023-1027.
[57] Weng H, Dai X, Fang Z. Topological semimetals predicted from ffrst-principlescalculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[58] Dirac P A M. The quantum theory of the electron[J]. Proceedings of the RoyalSociety of London. Series A, Containing Papers of a Mathematical and PhysicalCharacter, 1928, 117(778): 610-624.
[59] Weyl H, others. Electron and gravitation[J]. z. Phys, 1929, 56 : 330-352.
[60] Yang S-Y, Yang H, Derunova E, et al. Symmetry demanded topological nodal-linematerials[J]. Advances in Physics: X, 2018, 3(1): 1414631.
[61] Wang Z, Sun Y, Chen X-Q, et al. Dirac semimetal and topological phase transitionsin A3Bi (A = Na, K, Rb)[J]. Physical Review B, 2012, 85(19) : 195320.
[62] Liu Z, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Diracsemimetal, Na3Bi[J]. Science, 2014, 343(6173) : 864-867.
[63] Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantumtransport in Cd3As2[J]. Physical Review B, 2013, 88(12) : 125427.
[64] Liu Z, Jiang J, Zhou B, et al. A stable three-dimensional topological Diracsemimetal Cd3As2[J]. Nature materials, 2014, 13(7) : 677-681.
[65] Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arcsurface states in the electronic structure of pyrochlore iridates[J]. Physical ReviewB, 2011, 83(20): 205101.
[66] Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Halleffect in HgCr2Se4[J]. Physical review letters, 2011, 107(18): 186806.
[67] Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetrictransition-metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[68] Lv B, Weng H, Fu B, et al. Experimental discovery of Weyl semimetal TaAs[J].Physical Review X, 2015, 5(3): 031013.
[69] Xu S-Y, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetaland topological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.
[70] Burkov A, Hook M, Balents L. Topological nodal semimetals[J]. Physical ReviewB, 2011, 84(23): 235126.
[71] Chen C, Xu X, Jiang J, et al. Dirac line nodes and effect of spin-orbit coupling inthe nonsymmorphic critical semimetals MSiS (M = Hf, Zr)[J]. Physical Review B,2017, 95(12): 125126.
[72] Xu Q, Yu R, Fang Z, et al. Topological nodal line semimetals in the CaP2 family ofmaterials[J]. Physical Review B, 2017, 95(4): 045136.
[73] Fu B-B, Yi C-J, Zhang T-T, et al. Dirac nodal surfaces and nodal lines in ZrSiS[J].Science advances, 2019, 5(5): eaau6459.
[74] Song Y, Wang G, Li S, et al. Photoemission spectroscopic evidence for the diracnodal line in the monoclinic semimetal SrAs3[J]. Physical review letters, 2020,124(5): 056402.
[75] Cheng E, Xia W, Shi X, et al. Magnetism-induced topological transition inEuAs3[J]. Nature Communications, 2021, 12(1) : 6970.
[76] Ali M N, Xiong J, Flynn S, et al. Large, non-saturating magnetoresistance inWTe2[J]. Nature, 2014, 514(7521) : 205-208.
[77] Jia S, Xu S-Y, Hasan M Z. Weyl semimetals, Fermi arcs and chiral anomalies[J].Nature materials, 2016, 15(11): 1140-1144.
[78] Niu R, Zhu W. Materials and possible mechanisms of extremely large magnetoresistance: A review[J]. Journal of Physics: Condensed Matter, 2021, 34(11) :113001.
[79] Chang C-Z, Liu C-X, MacDonald A H. Colloquium: Quantum anomalous hall effect[J]. Reviews of Modern Physics, 2023, 95(1): 011002.
[80] Hu J, Xu S-Y, Ni N, et al. Transport of topological semimetals[J]. Annual Reviewof Materials Research, 2019, 49 : 207-252.
[81] BradlynB, Elcoro L, Cano J, et al. Topological quantum chemistry[J]. Nature, 2017,547(7663): 298-305.
[82] Zhang T, Jiang Y, Song Z, et al. Catalogue of topological electronic materials[J].Nature, 2019, 566(7745): 475-479.
[83] Tang F, Po H C, Vishwanath A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489.
[84] Vergniory M, Elcoro L, Felser C, et al. A complete catalogue of high-quality topological materials[J]. Nature, 2019, 566(7745): 480-485.
[85] Watanabe H, Po H C, Vishwanath A. Structure and topology of band structures inthe 1651 magnetic space groups[J]. Science advances, 2018, 4(8): eaat8685.
[86] Elcoro L, Wieder B J, Song Z, et al. Magnetic topological quantum chemistry[J].Nature communications, 2021, 12(1): 5965.
[87] Xu Y, Elcoro L, Song Z-D, et al. High-throughput calculations of magnetic topological materials[J]. Nature, 2020, 586(7831): 702-707.
[88] James R M. Topology[J]. Prentic Hall of India Private Limited, New delhi, 2000,7.
[89] Lv B, Qian T, Ding H. Experimental perspective on three-dimensional topologicalsemimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[90] Yang L, Liu Z, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetriccompound TaAs[J]. Nature physics, 2015, 11(9): 728-732.
[91] Soluyanov A A, Gresch D, Wang Z, et al. Type-ii weyl semimetals[J]. Nature, 2015,527(7579): 495-498.
[92] Deng K, Wan G, Deng P, et al. Experimental observation of topological Fermi arcsin type-II Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12) : 1105-1110.
[93] Yan M, Huang H, Zhang K, et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1) : 257.
[94] Wang C, Zhang Y, Huang J, et al. Observation of Fermi arc and its connection withbulk states in the candidate type-II Weyl semimetal WTe2[J]. Physical Review B,2016, 94(24): 241119.
[95] Kumar N, Shekhar C, Wu S-C, et al. Observation of pseudo-two-dimensional electron transport in the rock salt-type topological semimetal LaBi[J]. Physical ReviewB, 2016, 93(24): 241106.
[96] Liang T, Gibson Q, Ali M N, et al. Ultrahigh mobility and giant magnetoresistancein the Dirac semimetal Cd3As2[J]. Nature materials, 2015, 14(3) : 280-284.
[97] Pavlosiuk O, Kaczorowski D. Galvanomagnetic properties of the putative type-IIDirac semimetal PtTe2[J]. Scientiffc Reports, 2018, 8(1): 11297.
[98] Huang X, Zhao L, Long Y, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015,5(3): 031023.
[99] Du J, Wang H, Chen Q, et al. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP[J]. Science China Physics, Mechanics & Astronomy,2016, 59 : 1-6.
[100] Singha R, Pariari A K, Satpati B, et al. Large nonsaturating magnetoresistance andsignature of nondegenerate Dirac nodes in ZrSiS[J]. Proceedings of the NationalAcademy of Sciences, 2017, 114(10): 2468-2473.
[101] An L, Zhu X, Gao W, et al. Chiral anomaly and nontrivial Berry phase in the topological nodal-line semimetal SrAs3[J]. Physical Review B, 2019, 99(4) : 045143.
[102] Jiang J, Tang F, Pan X, et al. Signature of strong spin-orbital coupling in the largenonsaturating magnetoresistance material WTe2[J]. Physical review letters, 2015,115(16): 166601.
[103] Wang K, Graf D, Li L, et al. Anisotropic giant magnetoresistance in NbSb2[J].Scientiffc reports, 2014, 4(1): 7328.
[104] Fallah Tafti F, Gibson Q, Kushwaha S, et al. Temperature-ffeld phase diagram ofextreme magnetoresistance[J]. Proceedings of the National Academy of Sciences,2016, 113(25): E3475-E3481.
[105] Zhang D, Jiang W, Yun H, et al. Robust negative longitudinal magnetoresistanceand spin–orbit torque in sputtered Pt3Sn and Pt3SnxFe1−x topological semimetal[J].Nature communications, 2023, 14(1): 4151.
[106] Bian Q, Li S, Luo A, et al. Visualizing discrete Fermi surfaces and possible nodalline to Weyl state evolution in ZrSiTe[J]. npj Quantum Materials, 2022, 7(1): 55.
[107] Zhang J, Wang D, Shi M, et al. Large dynamical axion ffeld in topological antiferromagnetic insulator Mn2Bi2Te5[J]. Chinese Physics Letters, 2020, 37(7) : 077304.
[108] Tang X-Y, Li Z, Xue F, et al. Intrinsic and tunable quantum anomalous Hall effectand magnetic topological phases in XYBi2Te5[J]. Physical Review B, 2023, 108(7) :075117.
[109] Bernevig B A, Felser C, Beidenkopf H. Progress and prospects in magnetic topological materials[J]. Nature, 2022, 603(7899): 41-51.
[110] Mong R S, Essin A M, Moore J E. Antiferromagnetic topological insulators[J].Physical Review B, 2010, 81(24): 245209.
[111] Sharpe A L, Fox E J, Barnard A W, et al. Emergent ferromagnetism near threequarters fflling in twisted bilayer graphene[J]. Science, 2019, 365(6453) : 605-608.
[112] Suzuki T, Chisnell R, Devarakonda A, et al. Large anomalous Hall effect in a halfHeusler antiferromagnet[J]. Nature Physics, 2016, 12(12): 1119-1123.
[113] Yang H, Sun Y, Zhang Y, et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn[J]. New Journal of Physics, 2017, 19(1) :015008.
[114] Tang P, Zhou Q, Xu G, et al. Dirac fermions in an antiferromagnetic semimetal[J].Nature Physics, 2016, 12(12): 1100-1104.
[115] Dolui K, Das T. Theory of Weyl orbital semimetals and predictions of several materials classes[J]. arXiv preprint arXiv:1412.2607, 2014.
[116] Liu E, Sun Y, Kumar N, et al. Giant anomalous Hall effect in a ferromagneticKagome-lattice semimetal[J]. Nature physics, 2018, 14(11): 1125-1131.
[117] Liu D, Liang A, Liu E, et al. Magnetic Weyl semimetal phase in a Kagomé crystal[J]. Science, 2019, 365(6459): 1282-1285.
[118] Borisenko S, Evtushinsky D, Gibson Q, et al. Time-reversal symmetry breakingtype-II Weyl state in YbMnBi2[J]. Nature communications, 2019, 10(1) : 3424.
[119] Belopolski I, Manna K, Sanchez D S, et al. Discovery of topological Weyl fermionlines and drumhead surface states in a room temperature magnet[J]. Science, 2019,365(6459): 1278-1281.
[120] Ma J, Wang H, Nie S, et al. Emergence of Nontrivial Low-Energy Dirac Fermionsin Antiferromagnetic EuCd2As2[J]. Advanced Materials, 2020, 32(14) : 1907565.
[121] Hertz H. Ueber einen Einffuss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267(8): 983-1000.
[122] Gonser U. Microscopic methods in metals: Vol 40[M]. [S.l.] : Springer Science &Business Media, 2012.
[123] Berglund C N, Spicer W E. Photoemission studies of copper and silver: Theory[J].Physical Review, 1964, 136(4A): A1030.
[124] Kane E. Implications of crystal momentum conservation in photoelectric emissionfor band-structure measurements[J]. Physical Review Letters, 1964, 12(4): 97.
[125] Smith N V, Traum M M, Di Salvo F. Mapping energy bands in layer compoundsfrom the angular dependence of ultraviolet photoemission[J]. Solid State Communications, 1974, 15(2): 211-214.
[126] Damascelli A, Hussain Z, Shen Z-X. Angle-resolved photoemission studies of thecuprate superconductors[J]. Reviews of modern physics, 2003, 75(2): 473.
[127] Zhou X, He S, Liu G, et al. New developments in laser-based photoemission spectroscopy and its scientiffc applications: a key issues review[J]. Reports on Progressin Physics, 2018, 81(6): 062101.
[128] Gong X, Lu Q, Song Y. Mechanical design and performance evaluation of KBmirror system for the ARPES beamline at SSRF[J]. Precision Engineering, 2016,46 : 166-176.
[129] Yang Y-C, Liu Z-T, Liu J-S, et al. High-resolution ARPES endstation for in situelectronic structure investigations at SSRF[J]. Nuclear Science and Techniques,2021, 32(3): 31.
[130] Chen W-C, Chen C-H, Huang A, et al. Formation of surface states on Pb (111) byAu adsorption[J]. Scientiffc Reports, 2023, 13(1): 1689.
[131] Zou C, Sun B, Zhang W, et al. Commissioning of a new beamline and station forARPES at NSRL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005,548(3): 574-581.
[132] Iwasawa H, Shimada K, Schwier E, et al. Rotatable high-resolution ARPES system for tunable linear-polarization geometry[J]. Journal of Synchrotron Radiation,2017, 24(4): 836-841.
[133] Arita M, Shimada K, Namatame H, et al. High-resolution and low-temperature photoemission spectroscopy at the hisor helical-undulator beamline[J]. Surface Reviewand Letters, 2002, 9(01): 535-539.
[134] Okuda T, Miyamaoto K, Miyahara H, et al. Efffcient spin resolved spectroscopyobservation machine at Hiroshima Synchrotron Radiation Center[J]. Review of scientiffc instruments, 2011, 82(10).
[135] Dudin P, Lacovig P, Fava C, et al. Angle-resolved photoemission spectroscopy andimaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2 L beamline of Elettra[J]. Journal of synchrotron radiation, 2010, 17(4): 445-450.
[136] Shimojima T, Okazaki K, Shin S. Low-temperature and high-energy-resolutionlaser photoemission spectroscopy[J]. Journal of the Physical Society of Japan,2015, 84(7): 072001.
[137] Strocov V. Intrinsic accuracy in 3-dimensional photoemission band mapping[J].Journal of Electron Spectroscopy and related phenomena, 2003, 130(1-3): 65-78.
[138] Chen Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy[J]. Frontiers of Physics, 2012,7 : 175-192.
[139] Otrokov M M, Menshchikova T V, Vergniory M G, et al. Highly-ordered widebandgap materials for quantized anomalous Hall and magnetoelectric effects[J].2D Materials, 2017, 4(2): 025082.
[140] Miao L, Wang Z, Ming W, et al. Quasiparticle dynamics in reshaped helical Diraccone of topological insulators[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 2758-2762.
[141] Xu S-Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuningin a magnetic topological insulator[J]. Nature Physics, 2012, 8(8): 616-622.
[142] Shikin A M, Estyunin D, Klimovskikh I I, et al. Nature of the Dirac gap modulationand surface magnetic interaction in axion antiferromagnetic topological insulatorMnBi2Te4[J]. Scientiffc Reports, 2020, 10(1) : 13226.
[143] Sass P M, Kim J, Vanderbilt D, et al. Robust A-type order and spin-ffop transitionon the surface of the antiferromagnetic topological insulator MnBi2Te4[J]. Physicalreview letters, 2020, 125(3): 037201.
[144] Tan H, Yan B. Distinct magnetic gaps between antiferromagnetic and ferromagneticorders driven by surface defects in the topological magnet MnBi2Te4[J]. Physicalreview letters, 2023, 130(12): 126702.
[145] Ge J, Liu Y, Li J, et al. High-Chern-number and high-temperature quantum Halleffect without Landau levels[J]. National science review, 2020, 7(8): 1280-1287.
[146] Kitaoka Y, Yasuoka H, Oka Y, et al. Observation of the antiferromagnetic order inmetallic compounds V3S4 and V3Se4[J]. Journal of the Physical Society of Japan,1979, 46(4): 1381-1382.
[147] Cowan R D. The theory of atomic structure and spectra[M]. [S.l.] : Univ of California Press, 1981.
[148] Li J, Yao Q, Wu L, et al. Designing light-element materials with large effectivespin-orbit coupling[J]. Nature Communications, 2022, 13(1): 919.
[149] Wakihara M, Kinoshita K, Hinode H, et al. Growth of single crystals of vanadiumsulffdes and some thermodynamic considerationsfor the vapor transport process[J].Journal of Crystal Growth, 1982, 56(1): 157-162.
[150] Vander Voort G F, Lampman S R, Sanders B R, et al. ASM handbook[J]. Metallography and microstructures, 2004, 9 : 44073-0002.
[151] Huang H, Zhou S, Duan W. Type-II Dirac fermions in the PtSe2 class of transitionmetal dichalcogenides[J]. Physical Review B, 2016, 94(12): 121117.
[152] Le C, Qin S, Wu X, et al. Three-dimensional topological critical Dirac semimetalin AMgBi (A = K, Rb, Cs)[J]. Physical Review B, 2017, 96(11): 115121.
[153] Ghosh B, Mondal D, Kuo C-N, et al. Observation of bulk states and spin-polarizedtopological surface states in transition metal dichalcogenide Dirac semimetal candidate NiTe2[J]. Physical Review B, 2019, 100(19) : 195134.
[154] Deng T, Chen C, Su H, et al. Electronic structure of the Si-containing topologicalDirac semimetal CaAl2Si2[J]. Physical Review B, 2020, 102(4) : 045106.
[155] Zhang X, Liu Q, Luo J-W, et al. Hidden spin polarization in inversion-symmetricbulk crystals[J]. Nature Physics, 2014, 10(5): 387-393.
[156] Niu R, Zhu W. Materials and possible mechanisms of extremely large magnetoresistance: A review78[J]. Journal of Physics: Condensed Matter, 2021, 34(11) :113001.
[157] Lv Y-Y, Li X, Zhang J, et al. Mobility-controlled extremely large magnetoresistancein perfect electron-hole compensated α-WP2 crystals[J]. Physical Review B, 2018,97(24): 245151.
[158] Jiang J, Schröter N, Wu S-C, et al. Observation of topological surface states andstrong electron/hole imbalance in extreme magnetoresistance compound LaBi[J].Physical Review Materials, 2018, 2(2): 024201.
[159] Duan X, Wu F, Chen J, et al. Tunable electronic structure and topological propertiesof LnPn (Ln= Ce, Pr, Sm, Gd, Yb; Pn= Sb, Bi)[J]. Communications Physics, 2018,1(1): 71.
[160] Li P, Wu Z, Wu F, et al. Tunable electronic structure and surface states in rare-earthmonobismuthides with partially fflled f shell[J]. Physical Review B, 2018, 98(8) :085103.
[161] Sun S, Wang Q, Guo P-J, et al. Large magnetoresistance in LaBi: origin of ffeldinduced resistivity upturn and plateau in compensated semimetals[J]. New Journalof Physics, 2016, 18(8): 082002.
[162] Kuthanazhi B, Jo N H, Xiang L, et al. Magnetisation and magneto-transport measurements on CeBi single crystals[J]. Philosophical Magazine, 2022, 102(6) : 542-558.
[163] Kasuya T, Sera M, Suzuki T. Anomalous Magnetoresistance in Ce1−xLaxSb andCe1−xLaxBi[J]. Journal of the Physical Society of Japan, 1993, 62(8): 2561-2563.
[164] Akiba K, Miyake A, Akahama Y, et al. Two-carrier analyses of the transport properties of black phosphorus under pressure[J]. Physical Review B, 2017, 95(11) :115126.
[165] Lou R, Fu B-B, Xu Q, et al. Evidence of topological insulator state in the semimetalLaBi[J]. Physical Review B, 2017, 95(11): 115140.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/834078
专题理学院_物理系
推荐引用方式
GB/T 7714
郝宇杰. 磁性拓扑材料的电子结构研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849469-郝宇杰-物理系.pdf(38437KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郝宇杰]的文章
百度学术
百度学术中相似的文章
[郝宇杰]的文章
必应学术
必应学术中相似的文章
[郝宇杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。