[1] Landau L D, Lifshitz E M. Statistical Physics: Volume 5 : Vol 5[M]. [S.l.] : Elsevier,2013.
[2] Klitzing K v, Dorda G, Pepper M. New method for high-accuracy determination ofthe ffne-structure constant based on quantized Hall resistance[J]. Physical reviewletters, 1980, 45(6): 494.
[3] Laughlin R B. Quantized Hall conductivity in two dimensions[J]. Physical ReviewB, 1981, 23(10): 5632.
[4] Tsui D C, Stormer H L, Gossard A C. Two-dimensional magnetotransport in theextreme quantum limit[J]. Physical Review Letters, 1982, 48(22): 1559.
[5] Laughlin R B. Anomalous quantum Hall effect: an incompressible quantum ffuidwith fractionally charged excitations[J]. Physical Review Letters, 1983, 50(18) :1395.
[6] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance ina two-dimensional periodic potential[J]. Physical review letters, 1982, 49(6) : 405.
[7] Simon B. Holonomy, the quantum adiabatic theorem, and Berry’s phase[J]. Physical Review Letters, 1983, 51(24): 2167.
[8] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedingsof the Royal Society of London. A. Mathematical and Physical Sciences, 1984,392(1802): 45-57.
[9] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical reviewletters, 2005, 95(22): 226801.
[10] Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect[J].Physical review letters, 2005, 95(14): 146802.
[11] Bernevig B A, Hughes T L, Zhang S-C. Quantum spin Hall effect and topologicalphase transition in HgTe quantum wells[J]. science, 2006, 314(5806) : 1757-1761.
[12] Bernevig B A, Zhang S-C. Quantum spin Hall effect[J]. Physical review letters,2006, 96(10): 106802.
[13] Fu L, Kane C L. Time reversal polarization and a Z2 adiabatic spin pump[J]. Physical Review B, 2006, 74(19): 195312.
[14] Konig M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTequantum wells[J]. Science, 2007, 318(5851): 766-770.
[15] Haldane F D M. Model for a quantum Hall effect without Landau levels:Condensed-matter realization of the” parity anomaly”[J]. Physical review letters,1988, 61(18): 2015.
[16] Yu R, Zhang W, Zhang H-J, et al. Quantized anomalous Hall effect in magnetictopological insulators[J]. science, 2010, 329(5987): 61-64.
[17] Chang C-Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013,340(6129): 167-170.
[18] Fu L, Kane C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302.
[19] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions[J]. Physicalreview letters, 2007, 98(10): 106803.
[20] Qi X-L, Hughes T L, Zhang S-C. Topological ffeld theory of time-reversal invariantinsulators[J]. Physical Review B, 2008, 78(19): 195424.
[21] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spinHall phase[J]. Nature, 2008, 452(7190): 970-974.
[22] Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 andSb2Te3 with a single Dirac cone on the surface[J]. Nature physics, 2009, 5(6) : 438-442.
[23] Chen Y, Analytis J G, Chu J-H, et al. Experimental realization of a threedimensional topological insulator, Bi2Te3[J]. science, 2009, 325(5937) : 178-181.
[24] Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helicalDirac transport regime[J]. Nature, 2009, 460(7259): 1101-1105.
[25] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 2007, 75(12): 121306.
[26] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator classwith a single Dirac cone on the surface[J]. Nature physics, 2009, 5(6): 398-402.
[27] Roy R. Topological phases and the quantum spin Hall effect in three dimensions[J].Physical Review B, 2009, 79(19): 195322.
[28] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of modernphysics, 2010, 82(4): 3045.
[29] Qi X-L, Zhang S-C. Topological insulators and superconductors[J]. Reviews ofmodern physics, 2011, 83(4): 1057.
[30] Chang C-Z, Tang P, Wang Y-L, et al. Chemical-potential-dependent gap opening atthe Dirac surface states of Bi2Se3 induced by aggregated substitutional Cr atoms[J].Physical review letters, 2014, 112(5): 056801.
[31] Ou Y, Liu C, Jiang G, et al. Enhancing the quantum anomalous Hall effect bymagnetic codoping in a topological insulator[J]. Advanced materials, 2018, 30(1) :1703062.
[32] Mogi M, Yoshimi R, Tsukazaki A, et al. Magnetic modulation doping in topologicalinsulators toward higher-temperature quantum anomalous Hall effect[J]. AppliedPhysics Letters, 2015, 107(18).
[33] Katmis F, Lauter V, Nogueira F S, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling[J]. Nature, 2016, 533(7604): 513-516.
[34] Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and observation ofan antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[35] Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waalslayered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[36] Otrokov M, Rusinov I P, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 fflms[J]. Physicalreview letters, 2019, 122(10): 107202.
[37] Aliev Z S, Amiraslanov I R, Nasonova D I, et al. Novel ternary layered manganesebismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J].Journal of Alloys and Compounds, 2019, 789 : 443-450.
[38] Gong Y, Guo J, Li J, et al. Experimental realization of an intrinsic magnetic topological insulator[J]. Chinese Physics Letters, 2019, 36(7): 076801.
[39] Zeugner A, Nietschke F, Wolter A U, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4[J]. Chemistry of Materials, 2019,31(8): 2795-2806.
[40] Vidal R, Bentmann H, Peixoto T, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001)[J]. Physical Review B, 2019,100(12): 121104.
[41] Lee S H, Zhu Y, Wang Y, et al. Spin scattering and noncollinear spin structureinduced intrinsic anomalous Hall effect in antiferromagnetic topological insulatorMnBi2Te4[J]. Physical Review Research, 2019, 1(1) : 012011.
[42] Hao Y-J, Liu P, Feng Y, et al. Gapless surface Dirac cone in antiferromagnetictopological insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4) : 041038.
[43] Li H, Gao S-Y, Duan S-F, et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4):041039.
[44] Chen Y, Xu L, Li J, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review X,2019, 9(4): 041040.
[45] Swatek P, Wu Y, Wang L-L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 2020, 101(16) :161109.
[46] Xu Y, Song Z, Wang Z, et al. Higher-order topology of the axion insulatorEuSn2As2[J]. Physical review letters, 2019, 122(25): 256402.
[47] Deng Y, Yu Y, Shi M Z, et al. Quantum anomalous Hall effect in intrinsic magnetictopological insulator MnBi2Te4[J]. Science, 2020, 367(6480) : 895-900.
[48] Liu C, Wang Y, Li H, et al. Robust axion insulator and Chern insulator phasesin a two-dimensional antiferromagnetic topological insulator[J]. Nature materials,2020, 19(5): 522-527.
[49] Serlin M, Tschirhart C, Polshyn H, et al. Intrinsic quantized anomalous Hall effectin a moiré heterostructure[J]. Science, 2020, 367(6480): 900-903.
[50] Li T, Jiang S, Shen B, et al. Quantum anomalous Hall effect from intertwined moirébands[J]. Nature, 2021, 600(7890): 641-646.
[51] Fu L. Topological crystalline insulators[J]. Physical review letters, 2011, 106(10) :106802.
[52] Ando Y, Fu L. Topological crystalline insulators and topological superconductors:From concepts to materials[J]. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 361-381.
[53] Hsieh T H, Lin H, Liu J, et al. Topological crystalline insulators in the SnTe materialclass[J]. Nature communications, 2012, 3(1): 982.
[54] Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystallineinsulator in SnTe[J]. Nature Physics, 2012, 8(11): 800-803.
[55] Xu S-Y, Liu C, Alidoust N, et al. Observation of a topological crystalline insulatorphase and topological phase transition in Pb1−xSnxTe[J]. Nature communications,2012, 3(1): 1192.
[56] Dziawa P, Kowalski B, Dybko K, et al. Topological crystalline insulator states inPb1−xSnxTe[J]. Nature materials, 2012, 11(12): 1023-1027.
[57] Weng H, Dai X, Fang Z. Topological semimetals predicted from ffrst-principlescalculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[58] Dirac P A M. The quantum theory of the electron[J]. Proceedings of the RoyalSociety of London. Series A, Containing Papers of a Mathematical and PhysicalCharacter, 1928, 117(778): 610-624.
[59] Weyl H, others. Electron and gravitation[J]. z. Phys, 1929, 56 : 330-352.
[60] Yang S-Y, Yang H, Derunova E, et al. Symmetry demanded topological nodal-linematerials[J]. Advances in Physics: X, 2018, 3(1): 1414631.
[61] Wang Z, Sun Y, Chen X-Q, et al. Dirac semimetal and topological phase transitionsin A3Bi (A = Na, K, Rb)[J]. Physical Review B, 2012, 85(19) : 195320.
[62] Liu Z, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Diracsemimetal, Na3Bi[J]. Science, 2014, 343(6173) : 864-867.
[63] Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantumtransport in Cd3As2[J]. Physical Review B, 2013, 88(12) : 125427.
[64] Liu Z, Jiang J, Zhou B, et al. A stable three-dimensional topological Diracsemimetal Cd3As2[J]. Nature materials, 2014, 13(7) : 677-681.
[65] Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arcsurface states in the electronic structure of pyrochlore iridates[J]. Physical ReviewB, 2011, 83(20): 205101.
[66] Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Halleffect in HgCr2Se4[J]. Physical review letters, 2011, 107(18): 186806.
[67] Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetrictransition-metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[68] Lv B, Weng H, Fu B, et al. Experimental discovery of Weyl semimetal TaAs[J].Physical Review X, 2015, 5(3): 031013.
[69] Xu S-Y, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetaland topological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.
[70] Burkov A, Hook M, Balents L. Topological nodal semimetals[J]. Physical ReviewB, 2011, 84(23): 235126.
[71] Chen C, Xu X, Jiang J, et al. Dirac line nodes and effect of spin-orbit coupling inthe nonsymmorphic critical semimetals MSiS (M = Hf, Zr)[J]. Physical Review B,2017, 95(12): 125126.
[72] Xu Q, Yu R, Fang Z, et al. Topological nodal line semimetals in the CaP2 family ofmaterials[J]. Physical Review B, 2017, 95(4): 045136.
[73] Fu B-B, Yi C-J, Zhang T-T, et al. Dirac nodal surfaces and nodal lines in ZrSiS[J].Science advances, 2019, 5(5): eaau6459.
[74] Song Y, Wang G, Li S, et al. Photoemission spectroscopic evidence for the diracnodal line in the monoclinic semimetal SrAs3[J]. Physical review letters, 2020,124(5): 056402.
[75] Cheng E, Xia W, Shi X, et al. Magnetism-induced topological transition inEuAs3[J]. Nature Communications, 2021, 12(1) : 6970.
[76] Ali M N, Xiong J, Flynn S, et al. Large, non-saturating magnetoresistance inWTe2[J]. Nature, 2014, 514(7521) : 205-208.
[77] Jia S, Xu S-Y, Hasan M Z. Weyl semimetals, Fermi arcs and chiral anomalies[J].Nature materials, 2016, 15(11): 1140-1144.
[78] Niu R, Zhu W. Materials and possible mechanisms of extremely large magnetoresistance: A review[J]. Journal of Physics: Condensed Matter, 2021, 34(11) :113001.
[79] Chang C-Z, Liu C-X, MacDonald A H. Colloquium: Quantum anomalous hall effect[J]. Reviews of Modern Physics, 2023, 95(1): 011002.
[80] Hu J, Xu S-Y, Ni N, et al. Transport of topological semimetals[J]. Annual Reviewof Materials Research, 2019, 49 : 207-252.
[81] BradlynB, Elcoro L, Cano J, et al. Topological quantum chemistry[J]. Nature, 2017,547(7663): 298-305.
[82] Zhang T, Jiang Y, Song Z, et al. Catalogue of topological electronic materials[J].Nature, 2019, 566(7745): 475-479.
[83] Tang F, Po H C, Vishwanath A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489.
[84] Vergniory M, Elcoro L, Felser C, et al. A complete catalogue of high-quality topological materials[J]. Nature, 2019, 566(7745): 480-485.
[85] Watanabe H, Po H C, Vishwanath A. Structure and topology of band structures inthe 1651 magnetic space groups[J]. Science advances, 2018, 4(8): eaat8685.
[86] Elcoro L, Wieder B J, Song Z, et al. Magnetic topological quantum chemistry[J].Nature communications, 2021, 12(1): 5965.
[87] Xu Y, Elcoro L, Song Z-D, et al. High-throughput calculations of magnetic topological materials[J]. Nature, 2020, 586(7831): 702-707.
[88] James R M. Topology[J]. Prentic Hall of India Private Limited, New delhi, 2000,7.
[89] Lv B, Qian T, Ding H. Experimental perspective on three-dimensional topologicalsemimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[90] Yang L, Liu Z, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetriccompound TaAs[J]. Nature physics, 2015, 11(9): 728-732.
[91] Soluyanov A A, Gresch D, Wang Z, et al. Type-ii weyl semimetals[J]. Nature, 2015,527(7579): 495-498.
[92] Deng K, Wan G, Deng P, et al. Experimental observation of topological Fermi arcsin type-II Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12) : 1105-1110.
[93] Yan M, Huang H, Zhang K, et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2[J]. Nature Communications, 2017, 8(1) : 257.
[94] Wang C, Zhang Y, Huang J, et al. Observation of Fermi arc and its connection withbulk states in the candidate type-II Weyl semimetal WTe2[J]. Physical Review B,2016, 94(24): 241119.
[95] Kumar N, Shekhar C, Wu S-C, et al. Observation of pseudo-two-dimensional electron transport in the rock salt-type topological semimetal LaBi[J]. Physical ReviewB, 2016, 93(24): 241106.
[96] Liang T, Gibson Q, Ali M N, et al. Ultrahigh mobility and giant magnetoresistancein the Dirac semimetal Cd3As2[J]. Nature materials, 2015, 14(3) : 280-284.
[97] Pavlosiuk O, Kaczorowski D. Galvanomagnetic properties of the putative type-IIDirac semimetal PtTe2[J]. Scientiffc Reports, 2018, 8(1): 11297.
[98] Huang X, Zhao L, Long Y, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015,5(3): 031023.
[99] Du J, Wang H, Chen Q, et al. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP[J]. Science China Physics, Mechanics & Astronomy,2016, 59 : 1-6.
[100] Singha R, Pariari A K, Satpati B, et al. Large nonsaturating magnetoresistance andsignature of nondegenerate Dirac nodes in ZrSiS[J]. Proceedings of the NationalAcademy of Sciences, 2017, 114(10): 2468-2473.
[101] An L, Zhu X, Gao W, et al. Chiral anomaly and nontrivial Berry phase in the topological nodal-line semimetal SrAs3[J]. Physical Review B, 2019, 99(4) : 045143.
[102] Jiang J, Tang F, Pan X, et al. Signature of strong spin-orbital coupling in the largenonsaturating magnetoresistance material WTe2[J]. Physical review letters, 2015,115(16): 166601.
[103] Wang K, Graf D, Li L, et al. Anisotropic giant magnetoresistance in NbSb2[J].Scientiffc reports, 2014, 4(1): 7328.
[104] Fallah Tafti F, Gibson Q, Kushwaha S, et al. Temperature-ffeld phase diagram ofextreme magnetoresistance[J]. Proceedings of the National Academy of Sciences,2016, 113(25): E3475-E3481.
[105] Zhang D, Jiang W, Yun H, et al. Robust negative longitudinal magnetoresistanceand spin–orbit torque in sputtered Pt3Sn and Pt3SnxFe1−x topological semimetal[J].Nature communications, 2023, 14(1): 4151.
[106] Bian Q, Li S, Luo A, et al. Visualizing discrete Fermi surfaces and possible nodalline to Weyl state evolution in ZrSiTe[J]. npj Quantum Materials, 2022, 7(1): 55.
[107] Zhang J, Wang D, Shi M, et al. Large dynamical axion ffeld in topological antiferromagnetic insulator Mn2Bi2Te5[J]. Chinese Physics Letters, 2020, 37(7) : 077304.
[108] Tang X-Y, Li Z, Xue F, et al. Intrinsic and tunable quantum anomalous Hall effectand magnetic topological phases in XYBi2Te5[J]. Physical Review B, 2023, 108(7) :075117.
[109] Bernevig B A, Felser C, Beidenkopf H. Progress and prospects in magnetic topological materials[J]. Nature, 2022, 603(7899): 41-51.
[110] Mong R S, Essin A M, Moore J E. Antiferromagnetic topological insulators[J].Physical Review B, 2010, 81(24): 245209.
[111] Sharpe A L, Fox E J, Barnard A W, et al. Emergent ferromagnetism near threequarters fflling in twisted bilayer graphene[J]. Science, 2019, 365(6453) : 605-608.
[112] Suzuki T, Chisnell R, Devarakonda A, et al. Large anomalous Hall effect in a halfHeusler antiferromagnet[J]. Nature Physics, 2016, 12(12): 1119-1123.
[113] Yang H, Sun Y, Zhang Y, et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn[J]. New Journal of Physics, 2017, 19(1) :015008.
[114] Tang P, Zhou Q, Xu G, et al. Dirac fermions in an antiferromagnetic semimetal[J].Nature Physics, 2016, 12(12): 1100-1104.
[115] Dolui K, Das T. Theory of Weyl orbital semimetals and predictions of several materials classes[J]. arXiv preprint arXiv:1412.2607, 2014.
[116] Liu E, Sun Y, Kumar N, et al. Giant anomalous Hall effect in a ferromagneticKagome-lattice semimetal[J]. Nature physics, 2018, 14(11): 1125-1131.
[117] Liu D, Liang A, Liu E, et al. Magnetic Weyl semimetal phase in a Kagomé crystal[J]. Science, 2019, 365(6459): 1282-1285.
[118] Borisenko S, Evtushinsky D, Gibson Q, et al. Time-reversal symmetry breakingtype-II Weyl state in YbMnBi2[J]. Nature communications, 2019, 10(1) : 3424.
[119] Belopolski I, Manna K, Sanchez D S, et al. Discovery of topological Weyl fermionlines and drumhead surface states in a room temperature magnet[J]. Science, 2019,365(6459): 1278-1281.
[120] Ma J, Wang H, Nie S, et al. Emergence of Nontrivial Low-Energy Dirac Fermionsin Antiferromagnetic EuCd2As2[J]. Advanced Materials, 2020, 32(14) : 1907565.
[121] Hertz H. Ueber einen Einffuss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267(8): 983-1000.
[122] Gonser U. Microscopic methods in metals: Vol 40[M]. [S.l.] : Springer Science &Business Media, 2012.
[123] Berglund C N, Spicer W E. Photoemission studies of copper and silver: Theory[J].Physical Review, 1964, 136(4A): A1030.
[124] Kane E. Implications of crystal momentum conservation in photoelectric emissionfor band-structure measurements[J]. Physical Review Letters, 1964, 12(4): 97.
[125] Smith N V, Traum M M, Di Salvo F. Mapping energy bands in layer compoundsfrom the angular dependence of ultraviolet photoemission[J]. Solid State Communications, 1974, 15(2): 211-214.
[126] Damascelli A, Hussain Z, Shen Z-X. Angle-resolved photoemission studies of thecuprate superconductors[J]. Reviews of modern physics, 2003, 75(2): 473.
[127] Zhou X, He S, Liu G, et al. New developments in laser-based photoemission spectroscopy and its scientiffc applications: a key issues review[J]. Reports on Progressin Physics, 2018, 81(6): 062101.
[128] Gong X, Lu Q, Song Y. Mechanical design and performance evaluation of KBmirror system for the ARPES beamline at SSRF[J]. Precision Engineering, 2016,46 : 166-176.
[129] Yang Y-C, Liu Z-T, Liu J-S, et al. High-resolution ARPES endstation for in situelectronic structure investigations at SSRF[J]. Nuclear Science and Techniques,2021, 32(3): 31.
[130] Chen W-C, Chen C-H, Huang A, et al. Formation of surface states on Pb (111) byAu adsorption[J]. Scientiffc Reports, 2023, 13(1): 1689.
[131] Zou C, Sun B, Zhang W, et al. Commissioning of a new beamline and station forARPES at NSRL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005,548(3): 574-581.
[132] Iwasawa H, Shimada K, Schwier E, et al. Rotatable high-resolution ARPES system for tunable linear-polarization geometry[J]. Journal of Synchrotron Radiation,2017, 24(4): 836-841.
[133] Arita M, Shimada K, Namatame H, et al. High-resolution and low-temperature photoemission spectroscopy at the hisor helical-undulator beamline[J]. Surface Reviewand Letters, 2002, 9(01): 535-539.
[134] Okuda T, Miyamaoto K, Miyahara H, et al. Efffcient spin resolved spectroscopyobservation machine at Hiroshima Synchrotron Radiation Center[J]. Review of scientiffc instruments, 2011, 82(10).
[135] Dudin P, Lacovig P, Fava C, et al. Angle-resolved photoemission spectroscopy andimaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2 L beamline of Elettra[J]. Journal of synchrotron radiation, 2010, 17(4): 445-450.
[136] Shimojima T, Okazaki K, Shin S. Low-temperature and high-energy-resolutionlaser photoemission spectroscopy[J]. Journal of the Physical Society of Japan,2015, 84(7): 072001.
[137] Strocov V. Intrinsic accuracy in 3-dimensional photoemission band mapping[J].Journal of Electron Spectroscopy and related phenomena, 2003, 130(1-3): 65-78.
[138] Chen Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy[J]. Frontiers of Physics, 2012,7 : 175-192.
[139] Otrokov M M, Menshchikova T V, Vergniory M G, et al. Highly-ordered widebandgap materials for quantized anomalous Hall and magnetoelectric effects[J].2D Materials, 2017, 4(2): 025082.
[140] Miao L, Wang Z, Ming W, et al. Quasiparticle dynamics in reshaped helical Diraccone of topological insulators[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 2758-2762.
[141] Xu S-Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuningin a magnetic topological insulator[J]. Nature Physics, 2012, 8(8): 616-622.
[142] Shikin A M, Estyunin D, Klimovskikh I I, et al. Nature of the Dirac gap modulationand surface magnetic interaction in axion antiferromagnetic topological insulatorMnBi2Te4[J]. Scientiffc Reports, 2020, 10(1) : 13226.
[143] Sass P M, Kim J, Vanderbilt D, et al. Robust A-type order and spin-ffop transitionon the surface of the antiferromagnetic topological insulator MnBi2Te4[J]. Physicalreview letters, 2020, 125(3): 037201.
[144] Tan H, Yan B. Distinct magnetic gaps between antiferromagnetic and ferromagneticorders driven by surface defects in the topological magnet MnBi2Te4[J]. Physicalreview letters, 2023, 130(12): 126702.
[145] Ge J, Liu Y, Li J, et al. High-Chern-number and high-temperature quantum Halleffect without Landau levels[J]. National science review, 2020, 7(8): 1280-1287.
[146] Kitaoka Y, Yasuoka H, Oka Y, et al. Observation of the antiferromagnetic order inmetallic compounds V3S4 and V3Se4[J]. Journal of the Physical Society of Japan,1979, 46(4): 1381-1382.
[147] Cowan R D. The theory of atomic structure and spectra[M]. [S.l.] : Univ of California Press, 1981.
[148] Li J, Yao Q, Wu L, et al. Designing light-element materials with large effectivespin-orbit coupling[J]. Nature Communications, 2022, 13(1): 919.
[149] Wakihara M, Kinoshita K, Hinode H, et al. Growth of single crystals of vanadiumsulffdes and some thermodynamic considerationsfor the vapor transport process[J].Journal of Crystal Growth, 1982, 56(1): 157-162.
[150] Vander Voort G F, Lampman S R, Sanders B R, et al. ASM handbook[J]. Metallography and microstructures, 2004, 9 : 44073-0002.
[151] Huang H, Zhou S, Duan W. Type-II Dirac fermions in the PtSe2 class of transitionmetal dichalcogenides[J]. Physical Review B, 2016, 94(12): 121117.
[152] Le C, Qin S, Wu X, et al. Three-dimensional topological critical Dirac semimetalin AMgBi (A = K, Rb, Cs)[J]. Physical Review B, 2017, 96(11): 115121.
[153] Ghosh B, Mondal D, Kuo C-N, et al. Observation of bulk states and spin-polarizedtopological surface states in transition metal dichalcogenide Dirac semimetal candidate NiTe2[J]. Physical Review B, 2019, 100(19) : 195134.
[154] Deng T, Chen C, Su H, et al. Electronic structure of the Si-containing topologicalDirac semimetal CaAl2Si2[J]. Physical Review B, 2020, 102(4) : 045106.
[155] Zhang X, Liu Q, Luo J-W, et al. Hidden spin polarization in inversion-symmetricbulk crystals[J]. Nature Physics, 2014, 10(5): 387-393.
[156] Niu R, Zhu W. Materials and possible mechanisms of extremely large magnetoresistance: A review78[J]. Journal of Physics: Condensed Matter, 2021, 34(11) :113001.
[157] Lv Y-Y, Li X, Zhang J, et al. Mobility-controlled extremely large magnetoresistancein perfect electron-hole compensated α-WP2 crystals[J]. Physical Review B, 2018,97(24): 245151.
[158] Jiang J, Schröter N, Wu S-C, et al. Observation of topological surface states andstrong electron/hole imbalance in extreme magnetoresistance compound LaBi[J].Physical Review Materials, 2018, 2(2): 024201.
[159] Duan X, Wu F, Chen J, et al. Tunable electronic structure and topological propertiesof LnPn (Ln= Ce, Pr, Sm, Gd, Yb; Pn= Sb, Bi)[J]. Communications Physics, 2018,1(1): 71.
[160] Li P, Wu Z, Wu F, et al. Tunable electronic structure and surface states in rare-earthmonobismuthides with partially fflled f shell[J]. Physical Review B, 2018, 98(8) :085103.
[161] Sun S, Wang Q, Guo P-J, et al. Large magnetoresistance in LaBi: origin of ffeldinduced resistivity upturn and plateau in compensated semimetals[J]. New Journalof Physics, 2016, 18(8): 082002.
[162] Kuthanazhi B, Jo N H, Xiang L, et al. Magnetisation and magneto-transport measurements on CeBi single crystals[J]. Philosophical Magazine, 2022, 102(6) : 542-558.
[163] Kasuya T, Sera M, Suzuki T. Anomalous Magnetoresistance in Ce1−xLaxSb andCe1−xLaxBi[J]. Journal of the Physical Society of Japan, 1993, 62(8): 2561-2563.
[164] Akiba K, Miyake A, Akahama Y, et al. Two-carrier analyses of the transport properties of black phosphorus under pressure[J]. Physical Review B, 2017, 95(11) :115126.
[165] Lou R, Fu B-B, Xu Q, et al. Evidence of topological insulator state in the semimetalLaBi[J]. Physical Review B, 2017, 95(11): 115140.
修改评论