中文版 | English
题名

Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery

作者
通讯作者Zhang, Jin; Shi, Peng
发表日期
2024-10-18
DOI
发表期刊
EISSN
2589-0042
卷号27期号:10
摘要
In this study, we present an approach to neuropharmacological research by integrating few-shot meta- learning algorithms with brain activity mapping (BAMing) to enhance the discovery of central nervous system (CNS) therapeutics. By utilizing patterns from previously validated CNS drugs, our approach facilitates the rapid identification and prediction of potential drug candidates from limited datasets, thereby accelerating the drug discovery process. The application of few-shot meta-learning algorithms allows us to adeptly navigate the challenges of limited sample sizes prevalent in neuropharmacology. The study reveals that our meta-learning-based convolutional neural network (Meta-CNN) models demonstrate enhanced stability and improved prediction accuracy over traditional machine-learning methods. Moreover, our BAM library proves instrumental in classifying CNS drugs and aiding in pharmaceutical repurposing and repositioning. Overall, this research not only demonstrates the effectiveness in overcoming data limitations but also highlights the significant potential of combining BAM with advanced meta-learning techniques in CNS drug discovery.
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["U20A20194","2222106","12326605","62331014"] ; Research Grants Council of Hong Kong SAR["11215920","11220024","11218522","11218523"] ; Guangdong Basic and Applied Basic Research Foundation[2022B1515020082] ; Shenzhen-Hong Kong-Macau Science and Technology Program[SGDX2020110309300502] ; Shenzhen Science and Tech-nology Program[RCYX20200714114700072] ; City University of Hong Kong["7005084","7005206","7005642","7020003","7020077","9680233","9240060"]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001317448300001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/834183
专题理学院_数学系
作者单位
1.City Univ Hong Kong, Dept Biomed Engn, Kowloon, Hong Kong 999077, Peoples R China
2.Natl Ctr Appl Math Shenzhen, Shenzhen 518000, Peoples R China
3.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
4.City Univ Hong Kong, Dept Biomed Sci, Kowloon, Hong Kong 999077, Peoples R China
5.East China Normal Univ, Innovat Ctr AI & Drug Discovery, Shanghai 200062, Peoples R China
6.Harvard Med Sch, Massachusetts Gen Hosp, Ctr Genom Med, Dept Neurol,Chem Neurobiol Lab,Precis Therapeut Un, Boston, MA 02114 USA
7.Chinese Univ Hong Kong, Dept Surg, Kowloon, Hong Kong 999077, Peoples R China
8.City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
9.Shenzhen Polytech Univ, Inst Appl Math, Shenzhen 518055, Peoples R China
第一作者单位数学系
通讯作者单位数学系
推荐引用方式
GB/T 7714
Luo, Xuan,Ding, Yanyun,Cao, Yi,et al. Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery[J]. ISCIENCE,2024,27(10).
APA
Luo, Xuan.,Ding, Yanyun.,Cao, Yi.,Liu, Zhen.,Zhang, Wenchong.,...&Shi, Peng.(2024).Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery.ISCIENCE,27(10).
MLA
Luo, Xuan,et al."Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery".ISCIENCE 27.10(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo, Xuan]的文章
[Ding, Yanyun]的文章
[Cao, Yi]的文章
百度学术
百度学术中相似的文章
[Luo, Xuan]的文章
[Ding, Yanyun]的文章
[Cao, Yi]的文章
必应学术
必应学术中相似的文章
[Luo, Xuan]的文章
[Ding, Yanyun]的文章
[Cao, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。