中文版 | English
题名

Cooperative coevolution for non-separable large-scale black-box optimization: Convergence analyses and distributed accelerations

作者
通讯作者Shi, Yuhui
发表日期
2024-11-01
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号166
摘要
Given the ubiquity of non-separable optimization problems in real worlds, in this paper we analyze and extend the large-scale version of the well-known cooperative coevolution (CC), a divide-and-conquer black-box optimization framework, on non-separable functions. First, we reveal empirical reasons of when decomposition- based methods are preferred or not in practice on some non-separable large-scale problems, which have not been clearly pointed out in many previous CC papers. Then, we formalize CC to a continuous-game model via simplification, but without losing its essential property. Different from previous evolutionary game theory for CC, our new model provides a much simpler but useful viewpoint to analyze its convergence, since only the pure Nash equilibrium concept is needed and more general fitness landscapes can be explicitly considered. Based on convergence analyses, we propose a hierarchical decomposition strategy for better generalization, as for any decomposition, there is a risk of getting trapped into a suboptimal Nash equilibrium. Finally, we use powerful distributed computing to accelerate it under the recent multi-level learning framework, which combines the fine-tuning ability from decomposition with the invariance property of CMA-ES. Experiments on a set of high-dimensional test functions validate both its search performance and scalability (w.r.t. CPU cores) on a clustering computing platform with 400 CPU cores.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Shenzhen Fundamental Research Program[JCYJ20200109141235597] ; Guangdong Basic and Applied Basic Research Foundation["2024A1515012241","2021A1515110024"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:001315476100001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/834232
专题工学院_计算机科学与工程系
作者单位
1.Harbin Inst Technol, Harbin 150001, Heilongjiang, Peoples R China
2.Univ Technol Sydney, Australian Artificial Intelligence Inst AAII, Fac Engn & Informat Technol, 15 Broadway, Sydney, NSW 2007, Australia
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Duan, Qiqi,Shao, Chang,Zhou, Guochen,et al. Cooperative coevolution for non-separable large-scale black-box optimization: Convergence analyses and distributed accelerations[J]. APPLIED SOFT COMPUTING,2024,166.
APA
Duan, Qiqi,Shao, Chang,Zhou, Guochen,Yang, Haobin,Zhao, Qi,&Shi, Yuhui.(2024).Cooperative coevolution for non-separable large-scale black-box optimization: Convergence analyses and distributed accelerations.APPLIED SOFT COMPUTING,166.
MLA
Duan, Qiqi,et al."Cooperative coevolution for non-separable large-scale black-box optimization: Convergence analyses and distributed accelerations".APPLIED SOFT COMPUTING 166(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Duan, Qiqi]的文章
[Shao, Chang]的文章
[Zhou, Guochen]的文章
百度学术
百度学术中相似的文章
[Duan, Qiqi]的文章
[Shao, Chang]的文章
[Zhou, Guochen]的文章
必应学术
必应学术中相似的文章
[Duan, Qiqi]的文章
[Shao, Chang]的文章
[Zhou, Guochen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。