题名 | AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN |
作者 | |
通讯作者 | Chen, Yuntian; Zhang, Dongxiao |
发表日期 | 2024-09-01
|
DOI | |
发表期刊 | |
EISSN | 2640-4567
|
摘要 | ["Explainable artificial intelligence (XAI) aims to develop transparent explanatory approaches for \"black-box\" deep learning models. However, it remains difficult for existing methods to achieve the trade-off of the three key criteria in interpretability, namely, reliability, understandability, and usability, which hinder their practical applications. In this article, we propose a self-supervised automatic semantic interpretable explainable artificial intelligence (AS-XAI) framework, which utilizes transparent orthogonal embedding semantic extraction spaces and row-centered principal component analysis (PCA) for global semantic interpretation of model decisions in the absence of human interference, without additional computational costs. In addition, the invariance of filter feature high-rank decomposition is used to evaluate model sensitivity to different semantic concepts. Extensive experiments demonstrate that robust and orthogonal semantic spaces can be automatically extracted by AS-XAI, providing more effective global interpretability for convolutional neural networks (CNNs) and generating human-comprehensible explanations. The proposed approach offers broad fine-grained extensible practical applications, including shared semantic interpretation under out-of-distribution (OOD) categories, auxiliary explanations for species that are challenging to distinguish, and classification explanations from various perspectives. In a systematic evaluation by users with varying levels of AI knowledge, AS-XAI demonstrated superior \"glass box\" characteristics.","Explainable artificial intelligence (XAI) provides transparent deep learning explanations. This article introduces self-supervised automatic semantic interpretable XAI (AS-XAI), a framework using orthogonal embedding spaces and principal component analysis (PCA) for global semantic interpretation, and offers effective interpretability for convolutional neural networks (CNNs), including out-of-distribution (OOD) category interpretation and species classification, with minimal computational cost.image (c) 2024 WILEY-VCH GmbH"] |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | National Center for Applied Mathematics Shenzhen[ZDSYS20200421111201738]
; SUSTech-Qingdao New Energy Technology Research Institute[62106116]
; National Natural Science Foundation of China[PCL2022A05]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Robotics
|
WOS记录号 | WOS:001322069600001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/834291 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China 2.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Guangdong, Peoples R China 3.Peking Univ, Coll Engn, BIC ESAT, ERE, Beijing 100871, Peoples R China 4.Peking Univ, SKLTCS, Coll Engn, Beijing 100871, Peoples R China 5.Eastern Inst Technol, Ningbo Inst Digital Twin, R China, Ningbo 315200, Zhejiang, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Sun, Changqi,Xu, Hao,Chen, Yuntian,et al. AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN[J]. ADVANCED INTELLIGENT SYSTEMS,2024.
|
APA |
Sun, Changqi,Xu, Hao,Chen, Yuntian,&Zhang, Dongxiao.(2024).AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN.ADVANCED INTELLIGENT SYSTEMS.
|
MLA |
Sun, Changqi,et al."AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN".ADVANCED INTELLIGENT SYSTEMS (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论