中文版 | English
题名

AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN

作者
通讯作者Chen, Yuntian; Zhang, Dongxiao
发表日期
2024-09-01
DOI
发表期刊
EISSN
2640-4567
摘要
["Explainable artificial intelligence (XAI) aims to develop transparent explanatory approaches for \"black-box\" deep learning models. However, it remains difficult for existing methods to achieve the trade-off of the three key criteria in interpretability, namely, reliability, understandability, and usability, which hinder their practical applications. In this article, we propose a self-supervised automatic semantic interpretable explainable artificial intelligence (AS-XAI) framework, which utilizes transparent orthogonal embedding semantic extraction spaces and row-centered principal component analysis (PCA) for global semantic interpretation of model decisions in the absence of human interference, without additional computational costs. In addition, the invariance of filter feature high-rank decomposition is used to evaluate model sensitivity to different semantic concepts. Extensive experiments demonstrate that robust and orthogonal semantic spaces can be automatically extracted by AS-XAI, providing more effective global interpretability for convolutional neural networks (CNNs) and generating human-comprehensible explanations. The proposed approach offers broad fine-grained extensible practical applications, including shared semantic interpretation under out-of-distribution (OOD) categories, auxiliary explanations for species that are challenging to distinguish, and classification explanations from various perspectives. In a systematic evaluation by users with varying levels of AI knowledge, AS-XAI demonstrated superior \"glass box\" characteristics.","Explainable artificial intelligence (XAI) provides transparent deep learning explanations. This article introduces self-supervised automatic semantic interpretable XAI (AS-XAI), a framework using orthogonal embedding spaces and principal component analysis (PCA) for global semantic interpretation, and offers effective interpretability for convolutional neural networks (CNNs), including out-of-distribution (OOD) category interpretation and species classification, with minimal computational cost.image (c) 2024 WILEY-VCH GmbH"]
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一
资助项目
National Center for Applied Mathematics Shenzhen[ZDSYS20200421111201738] ; SUSTech-Qingdao New Energy Technology Research Institute[62106116] ; National Natural Science Foundation of China[PCL2022A05]
WOS研究方向
Automation & Control Systems ; Computer Science ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:001322069600001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/834291
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
2.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Guangdong, Peoples R China
3.Peking Univ, Coll Engn, BIC ESAT, ERE, Beijing 100871, Peoples R China
4.Peking Univ, SKLTCS, Coll Engn, Beijing 100871, Peoples R China
5.Eastern Inst Technol, Ningbo Inst Digital Twin, R China, Ningbo 315200, Zhejiang, Peoples R China
第一作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Sun, Changqi,Xu, Hao,Chen, Yuntian,et al. AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN[J]. ADVANCED INTELLIGENT SYSTEMS,2024.
APA
Sun, Changqi,Xu, Hao,Chen, Yuntian,&Zhang, Dongxiao.(2024).AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN.ADVANCED INTELLIGENT SYSTEMS.
MLA
Sun, Changqi,et al."AS-XAI: Self-Supervised Automatic Semantic Interpretation for CNN".ADVANCED INTELLIGENT SYSTEMS (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Changqi]的文章
[Xu, Hao]的文章
[Chen, Yuntian]的文章
百度学术
百度学术中相似的文章
[Sun, Changqi]的文章
[Xu, Hao]的文章
[Chen, Yuntian]的文章
必应学术
必应学术中相似的文章
[Sun, Changqi]的文章
[Xu, Hao]的文章
[Chen, Yuntian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。