中文版 | English
题名

Deep-learning-based Q model building for high-resolution imaging

作者
通讯作者Xu, Jincheng; Zhang, Jianfeng
发表日期
2024-09-01
DOI
发表期刊
ISSN
0016-8025
EISSN
1365-2478
摘要
Building a macro Q model for deabsorption migration using surface reflection data is challenging owing to interferences of the reflections resulting from stacked thin layers. The effective Q approach gives an alternative way to overcome this difficulty. However, manual processing is involved for effective Q estimation. This restricts the use of denser grids in building an inhomogeneous Q model. We therefore incorporate deep learning into the effective Q approach, thus yielding a deep learning-based Q model building scheme. The resulting scheme improves the manual effective Q estimation by simultaneously accounting for the imaging resolution and induced noises using two networks. Moreover, most manual processing is reduced in spite of denser grids in building a 3D Q model. One of the networks used is a 1D convolutional neural network that determines the optimal upper cut-off frequency for a selected Q with an input of multi-channel amplitude spectra, and another is a residual neural network that determines the optimal Q for a series of Q values with an input of multi-channel imaging sections inside the selected small window filtered under the corresponding upper cut-off frequencies. As a result, a Q model that improves the imaging resolution in the absence of amplification of noises is gained. Transfer learning is used, thus reducing the training cost when applied to different geological targets. We test our scheme using 3D field data. Higher resolution images without induced noises are obtained by a deabsorption migration using the Q model built and compared to those obtained by the migration without absorption compensation.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key R&D Program of China[2020YFA0713402] ; National Key R&D Program of China["42174128","42030802"] ; National Natural Science Fund of China[2022B1212010002]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001320537600001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/834308
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
2.Guangdong Prov Key Lab Geophys High resolut Imagin, Shenzhen, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Ju, Xin,Xu, Jincheng,Zhang, Jianfeng. Deep-learning-based Q model building for high-resolution imaging[J]. GEOPHYSICAL PROSPECTING,2024.
APA
Ju, Xin,Xu, Jincheng,&Zhang, Jianfeng.(2024).Deep-learning-based Q model building for high-resolution imaging.GEOPHYSICAL PROSPECTING.
MLA
Ju, Xin,et al."Deep-learning-based Q model building for high-resolution imaging".GEOPHYSICAL PROSPECTING (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ju, Xin]的文章
[Xu, Jincheng]的文章
[Zhang, Jianfeng]的文章
百度学术
百度学术中相似的文章
[Ju, Xin]的文章
[Xu, Jincheng]的文章
[Zhang, Jianfeng]的文章
必应学术
必应学术中相似的文章
[Ju, Xin]的文章
[Xu, Jincheng]的文章
[Zhang, Jianfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。