题名 | Uniformly high-order bound-preserving OEDG schemes for two-phase flows |
作者 | |
通讯作者 | Wu, Kailiang |
发表日期 | 2024-09-01
|
DOI | |
发表期刊 | |
ISSN | 0218-2025
|
EISSN | 1793-6314
|
摘要 | This paper proposes and rigorously analyzes novel high-order bound-preserving oscillation-eliminating discontinuous Galerkin (BP-OEDG) schemes with the Harten-Lax-van Leer (HLL) numerical flux for the Kapila five-equation two-phase flow model. The evolution equation for the volume fraction is formulated as a conservative advection equation with an additional non-conservative source term. Utilizing a technical splitting approach, we design a uniformly high-order discretization for this source term, incorporating an "upwind" discretization of the non-conservative product at cell interfaces based on the HLL wave speeds. This method inherently ensures the symmetry of the volume fractions, which is crucial for establishing the bound-preserving property. The positivity of partial densities and internal energy is rigorously proven using the geometric quasilinearization (GQL) approach, which transforms the nonlinear pressure positivity constraint into equivalent linear constraints. To suppress potential spurious oscillations, we incorporate a scale-invariant and linearity-invariant oscillation elimination (OE) procedure that damps the DG modal coefficients after each Runge-Kutta stage, as proposed in [M. Peng, Z. Sun and K. Wu, OEDG: Oscillation-eliminating discontinuous Galerkin method for hyperbolic conservation laws, Math. Comput. (2024), https://doi.org/10.1090/mcom/3998 ]. This OE procedure, acting as a post-processing filter based on the jumps of the DG solution at cell interfaces, is easy to implement, maintains the Abgrall equilibrium condition around an isolated material interface, and preserves the high-order accuracy of the DG schemes. The effectiveness and robustness of the proposed high-order BP-OEDG schemes are demonstrated through several benchmark numerical experiments. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Science and Technology Program[RCJC20221008092757098]
; National Natural Science Foundation of China[12171227]
; Postdoctoral Fellowship Program of CPSF[GZB20240293]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:001320022500001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/834330 |
专题 | 理学院_数学系 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Shenzhen 518055, Peoples R China 3.Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland |
第一作者单位 | 数学系; 南方科技大学 |
通讯作者单位 | 数学系; 南方科技大学 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Yan, Ruifang,Abgrall, Remi,Wu, Kailiang. Uniformly high-order bound-preserving OEDG schemes for two-phase flows[J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES,2024.
|
APA |
Yan, Ruifang,Abgrall, Remi,&Wu, Kailiang.(2024).Uniformly high-order bound-preserving OEDG schemes for two-phase flows.MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES.
|
MLA |
Yan, Ruifang,et al."Uniformly high-order bound-preserving OEDG schemes for two-phase flows".MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论