中文版 | English
题名

High-order oscillation-eliminating Hermite WENO method for hyperbolic conservation laws

作者
通讯作者Wu, Kailiang
发表日期
2024-12-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号519
摘要
This paper proposes high-order accurate, oscillation-eliminating, Hermite weighted essentially non-oscillatory (OE-HWENO) finite volume schemes for hyperbolic conservation laws, motivated by the oscillation-eliminating (OE) discontinuous Galerkin schemes recently proposed in [M. Peng, Z. Sun, and K. Wu, 2024 [30]]. The OE-HWENO schemes incorporate an OE procedure after each Runge-Kutta stage, by dampening the first-order moments of the HWENO solution to suppress spurious oscillations without any problem-dependent parameter. The OE procedure acts as a moment filter and is derived from the solution operator of a novel damping equation, which is exactly solved without any discretization. Thanks to this distinctive feature, the OE-HWENO method remains stable with a normal CFL number, even for strong shocks resulting in highly stiff damping terms. To ensure the essentially non-oscillatory property of the OE-HWENO method across problems with varying scales and wave speeds, we design a scale-invariant and evolution- invariant damping equation and propose a generic dimensionless transformation for HWENO reconstruction. The OE-HWENO method offers several notable advantages over existing HWENO methods. First, the OE procedure is highly efficient and straightforward to implement, requiring only simple multiplication of first-order moments by a damping factor. Furthermore, we rigorously prove that the OE procedure maintains the high-order accuracy and local compactness of the original HWENO schemes and demonstrate that it does not compromise the spectral properties via the approximate dispersion relation for smooth solutions. Notably, the proposed OE procedure is non-intrusive, enabling seamless integration as an independent module into existing HWENO codes. Finally, we rigorously analyze the bound-preserving (BP) property of the OE-HWENO method using the optimal cell average decomposition approach [S. Cui, S. Ding, and K. Wu, 2024 [8]], which relaxes the theoretical BP constraint for time step-size and reduces the number of decomposition points, thereby further enhancing efficiency. Extensive benchmarks validate the accuracy, efficiency, high resolution, and robustness of the OE-HWENO method.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:001319789700001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/834338
专题理学院_数学系
作者单位
1.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
2.Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
第一作者单位数学系
通讯作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Fan, Chuan,Wu, Kailiang. High-order oscillation-eliminating Hermite WENO method for hyperbolic conservation laws[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2024,519.
APA
Fan, Chuan,&Wu, Kailiang.(2024).High-order oscillation-eliminating Hermite WENO method for hyperbolic conservation laws.JOURNAL OF COMPUTATIONAL PHYSICS,519.
MLA
Fan, Chuan,et al."High-order oscillation-eliminating Hermite WENO method for hyperbolic conservation laws".JOURNAL OF COMPUTATIONAL PHYSICS 519(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fan, Chuan]的文章
[Wu, Kailiang]的文章
百度学术
百度学术中相似的文章
[Fan, Chuan]的文章
[Wu, Kailiang]的文章
必应学术
必应学术中相似的文章
[Fan, Chuan]的文章
[Wu, Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。