中文版 | English
题名

MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement

作者
通讯作者Mei, Xinkui
发表日期
2024-09-01
DOI
发表期刊
EISSN
2077-1312
卷号12期号:9
摘要
Underwater optical images have outstanding advantages for short-range underwater target detection tasks. However, owing to the limitations of special underwater imaging environments, underwater images often have several problems, such as noise interference, blur texture, low contrast, and color distortion. Marine underwater image enhancement addresses degraded underwater image quality caused by light absorption and scattering. This study introduces MSFE-UIENet, a high-performance network designed to improve image feature extraction, resulting in deep-learning-based underwater image enhancement, addressing the limitations of single convolution and upsampling/downsampling techniques. This network is designed to enhance the image quality in underwater settings by employing an encoder-decoder architecture. In response to the underwhelming enhancement performance caused by the conventional networks' sole downsampling method, this study introduces a pyramid downsampling module that captures more intricate image features through multi-scale downsampling. Additionally, to augment the feature extraction capabilities of the network, an advanced feature extraction module was proposed to capture detailed information from underwater images. Furthermore, to optimize the network's gradient flow, forward and backward branches were introduced to accelerate its convergence rate and improve stability. Experimental validation using underwater image datasets indicated that the proposed network effectively enhances underwater image quality, effectively preserving image details and noise suppression across various underwater environments.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
null[42276187]
WOS研究方向
Engineering ; Oceanography
WOS类目
Engineering, Marine ; Engineering, Ocean ; Oceanography
WOS记录号
WOS:001324056000001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/835340
专题工学院_电子与电气工程系
作者单位
1.Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
2.Natl Deep Sea Ctr, Deep Sea Technol Dept, Qingdao 266037, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Shengya,Mei, Xinkui,Ye, Xiufen,et al. MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2024,12(9).
APA
Zhao, Shengya,Mei, Xinkui,Ye, Xiufen,&Guo, Shuxiang.(2024).MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement.JOURNAL OF MARINE SCIENCE AND ENGINEERING,12(9).
MLA
Zhao, Shengya,et al."MSFE-UIENet: A Multi-Scale Feature Extraction Network for Marine Underwater Image Enhancement".JOURNAL OF MARINE SCIENCE AND ENGINEERING 12.9(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Shengya]的文章
[Mei, Xinkui]的文章
[Ye, Xiufen]的文章
百度学术
百度学术中相似的文章
[Zhao, Shengya]的文章
[Mei, Xinkui]的文章
[Ye, Xiufen]的文章
必应学术
必应学术中相似的文章
[Zhao, Shengya]的文章
[Mei, Xinkui]的文章
[Ye, Xiufen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。