中文版 | English
题名

3D Nodule Content-Based Metric Learning for Evidence-Based Lung Cancer Screening

作者
DOI
发表日期
2024-07-19
ISSN
1945-7871
ISBN
979-8-3503-9016-2
会议录名称
会议日期
15-19 July 2024
会议地点
Niagara Falls, ON, Canada
摘要
The characteristics of 3D nodules on Computed Tomography (CT), including size, location, shape, and attenuation, are primary medical clues for distinguishing between benign and malignant nodules. To support evidence-based decision-making for lung cancer screening in clinical practice, we present a 3D Nodule Content-based Metric Learning (3D-NCML) network to retrieve subsolid-benign, subsolid-malignant, solid-benign, and solid-malignant nodules similar to the indeterminate ones. The inputs of 3D-NCML are 3D patches that exactly contain the whole nodule to ensure all visual information is included. A spatial position and size coding module, a shape encoder module, and an attenuation extraction module are designed based on medical clues for guiding the network to learn important characteristics of nodules. Experiments on the LIDC-IDRI dataset and a private dataset demonstrate that 3D-NCML outperforms other methods by quantitative and qualitative analysis, with more similar nodules retrieved and ranked ahead.
学校署名
第一
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/840087
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
2.Research and Development Institute, Guangzhou Guangri Stock Co., Ltd., Guangzhou, China
3.China Telecom Cloud Computing Corporation, Beijing, China
4.Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
5.Department of Neurology, The First Affiliated Hospital and Clinical Neuroscience Institute of Jinan University, Guangzhou, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Xiaoxi Lu,Xingyue Wang,Jiansheng Fang,et al. 3D Nodule Content-Based Metric Learning for Evidence-Based Lung Cancer Screening[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaoxi Lu]的文章
[Xingyue Wang]的文章
[Jiansheng Fang]的文章
百度学术
百度学术中相似的文章
[Xiaoxi Lu]的文章
[Xingyue Wang]的文章
[Jiansheng Fang]的文章
必应学术
必应学术中相似的文章
[Xiaoxi Lu]的文章
[Xingyue Wang]的文章
[Jiansheng Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。