中文版 | English
题名

Radar Target Detection Based On OTFS Signaling: A Deep Learning Approach

作者
DOI
发表日期
2024-08-09
ISSN
2377-8644
ISBN
979-8-3503-7842-9
会议录名称
会议日期
7-9 Aug. 2024
会议地点
Hangzhou, China
摘要
Orthogonal time-frequency space (OTFS) offers significant advantages among various emerging modulation techniques by modulating the information in the delay-Doppler (DD) domain, making it promising for both communications and radar sensing applications. However, in multi-target detection scenarios, the masking effect poses challenges and diminishes the effectiveness of traditional constant false alarm rate (CFAR) detectors. Addressing this challenge and leveraging the capabilities of OTFS signaling, this paper proposes a novel deep-learning approach for radar target detection via OTFS. Our method involves preprocessing received symbols using two-dimensional cross-correlations, which are then adapted to the input of a neural network. Leveraging previously established learning weights, the deep neural network identifies potential target regions and assesses the likelihood of target presence, effectively controlling false alarm probabilities through adaptive thresholds. Through simulation experiments, we demonstrate the superiority of the method over traditional methods, particularly in scenarios with multiple targets and unknown signal-to-noise ratios (SNRs).
学校署名
第一
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/840107
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.Zhejiang University, Hangzhou, China
3.University of New South Wales, Sydney, Australia
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Long Tan,Weijie Yuan,Zhaohui Yang,et al. Radar Target Detection Based On OTFS Signaling: A Deep Learning Approach[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Long Tan]的文章
[Weijie Yuan]的文章
[Zhaohui Yang]的文章
百度学术
百度学术中相似的文章
[Long Tan]的文章
[Weijie Yuan]的文章
[Zhaohui Yang]的文章
必应学术
必应学术中相似的文章
[Long Tan]的文章
[Weijie Yuan]的文章
[Zhaohui Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。