中文版 | English
题名

Long-Term Vessel Trajectory Imputation with Physics-Guided Diffusion Probabilistic Model

作者
通讯作者Fan, Zipei; Song, Xuan
DOI
发表日期
2024-08-25
会议名称
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
ISSN
2154-817X
ISBN
9798400704901
会议录名称
页码
4398-4407
会议日期
August 25, 2024 - August 29, 2024
会议地点
Barcelona, Spain
会议录编者/会议主办者
ACM SIGKDD; ACM SIGMOD
出版者
摘要
Maritime traffic management increasingly relies on vessel position information provided by terrestrial and satellite networks of the Automatic Identification System (AIS). Unfortunately, the problem of missing AIS data can lead to long-term gaps in vessel trajectory, raising corresponding security concerns regarding collision risks and illicit activities. Existing imputation approaches are often constrained by vehicle-based low-sampling trajectories, hindering their ability to address unique characteristics of maritime transportation systems and long-term missing scenarios. To tackle these challenges, we propose a novel generative framework for long-term vessel trajectory imputation. Our framework considers irregular tracks of vessels, which differ from those of cars due to the absence of a structured road network, and ensures the continuity of multi-point imputed trajectories. Specifically, we first utilize a pre-trained trajectory embedding block to capture patterns of vessel movements. Subsequently, we introduce a diffusion-based model for generating missing trajectories, where observed trajectory modeling with transformer encoding architecture and embeddings of both historical vessel trajectory and external factors serve as conditional information. In particular, we design a physics-guided discriminator in the training stage, which imposes kinematic constraints between locations and angles to improve the continuity of the imputed trajectories. Comprehensive experiments and analysis on a real-world AIS dataset confirm the effectiveness of our proposed approach.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
学校署名
通讯
语种
英语
收录类别
资助项目
This work was partially supported by the grants of National Key Research and Development Project (2021YFB1714400) of China, Jilin Provincial International Cooperation Key Laboratory for Super Smart City and Zhujiang Project (2019QN01S744).
EI入藏号
20243817041046
EI主题词
Air traffic control ; Automatic guided vehicles ; Highway traffic control ; Motor transportation ; Network embeddings ; Railroad traffic control ; Street traffic control
EI分类号
:1105 ; Highway Systems:406.1 ; Roads and Streets:406.2 ; Highway Transportation:432 ; Cargo Highway Transportation:432.3 ; Passenger Railroad Transportation:433.2 ; Waterway Transportation:434 ; :435.1.1 ; Automatic Control Principles and Applications:731
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/840985
专题工学院_斯发基斯可信自主研究院
南方科技大学
作者单位
1.School of Artificial Intelligence, Jilin University, Changchun, China
2.Research and Development Department, LocationMind Inc., Tokyo, Japan
3.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology (SUSTech), Shenzhen, China
通讯作者单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Zhang, Zhiwen,Fan, Zipei,Lv, Zewu,et al. Long-Term Vessel Trajectory Imputation with Physics-Guided Diffusion Probabilistic Model[C]//ACM SIGKDD; ACM SIGMOD:Association for Computing Machinery,2024:4398-4407.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhiwen]的文章
[Fan, Zipei]的文章
[Lv, Zewu]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhiwen]的文章
[Fan, Zipei]的文章
[Lv, Zewu]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhiwen]的文章
[Fan, Zipei]的文章
[Lv, Zewu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。