中文版 | English
题名

LTR-HSS: A Learning-to-Rank Based Framework for Hypervolume Subset Selection

作者
通讯作者Zhang, Qingfu; Ishibuchi, Hisao
DOI
发表日期
2024
会议名称
18th International Conference on Parallel Problem Solving from Nature, PPSN 2024
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031700842
会议录名称
卷号
15151 LNCS
页码
36-51
会议日期
September 14, 2024 - September 18, 2024
会议地点
Hagenberg, Austria
出版者
摘要
Hypervolume subset selection (HSS) plays an important role in various aspects of the field of evolutionary multi-objective optimization, such as environmental selection and post-processing for decision-making. The goal of these problems is to find the optimal subset that maximizes the hypervolume from a given candidate solution set. Many methods have been developed to solve or approximately solve different types of HSS problems. However, existing approaches cannot effectively solve HSS problems with a large number of objectives within a short computation time. This drawback directly limits their applicability as a component for developing new EMO algorithms. In this paper, we propose a novel learning-to-rank based framework, named LTR-HSS, for solving the challenging HSS problems with a large number of objectives. The experimental results show that, compared to other state-of-the-art HSS methods, our proposed LTR-HSS requires a shorter computation time to solve HSS problems with large numbers of objectives while achieving superior or competitive hypervolume performance. This demonstrates the potential of our method to be integrated into algorithms for many-objective optimization.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
学校署名
通讯
语种
英语
收录类别
资助项目
This work was supported by the National Key R&D Program of China (Grant No. 2023YFE0106300), National Natural Science Foundation of China (Grant No. 62250710163, 62376115, 62276223), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), and the Research Grants Council of the Hong Kong Special Administrative Region, China [GRF Project No. CityU 11215622].Disclosure of Interests. The authors have no competing interests to declare that are relevant to the content of this article.
EI入藏号
20243917095144
EI主题词
Contrastive Learning ; Learning to rank ; Multiobjective optimization ; Optimization algorithms
EI分类号
:1101.2 ; :1106.1 ; :1201.7
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/841044
专题南方科技大学
作者单位
1.City University of Hong Kong, Hong Kong
2.Southern University of Science and Technology, Shenzhen; 518055, China
3.The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Gong, Cheng,Guo, Ping,Shu, Tianye,et al. LTR-HSS: A Learning-to-Rank Based Framework for Hypervolume Subset Selection[C]:Springer Science and Business Media Deutschland GmbH,2024:36-51.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gong, Cheng]的文章
[Guo, Ping]的文章
[Shu, Tianye]的文章
百度学术
百度学术中相似的文章
[Gong, Cheng]的文章
[Guo, Ping]的文章
[Shu, Tianye]的文章
必应学术
必应学术中相似的文章
[Gong, Cheng]的文章
[Guo, Ping]的文章
[Shu, Tianye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。