中文版 | English
题名

Three Objectives Degrade the Convergence Ability of Dominance-Based Multi-objective Evolutionary Algorithms

作者
通讯作者Zhang, Qingfu; Ishibuchi, Hisao
DOI
发表日期
2024
会议名称
18th International Conference on Parallel Problem Solving from Nature, PPSN 2024
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031700842
会议录名称
卷号
15151 LNCS
页码
52-67
会议日期
September 14, 2024 - September 18, 2024
会议地点
Hagenberg, Austria
出版者
摘要
In the evolutionary multi-objective optimization (EMO) community, it is well known that the convergence ability of dominance-based multi-objective evolutionary algorithms (MOEAs) is severely deteriorated on many-objective problems with more than three objectives. In this paper, we clearly demonstrate that the convergence ability of NSGA-II deteriorates even in the case of three objectives. Our experimental results on multi-objective knapsack and traveling salesman problems with 2–6 objectives show that NSGA-II starts to deteriorate the quality of the current population after a number of generations even when it is applied to three-objective problems. Surprisingly, NSGA-III also shows a similar performance deterioration. We analyze the search behavior of NSGA-II, NSGA-III, three versions of MOEA/D, and SMS-EMOA. Then, we explain the reason for the performance deterioration of NSGA-II and NSGA-III, which exists in the environmental selection mechanism of each algorithm. Another interesting observation is that NSGA-II has the best or second best performance (next to MOEA/D with the weighted sum) among the examined algorithms on many-objective problems in early generations before it starts to show performance deterioration.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
学校署名
通讯
语种
英语
收录类别
资助项目
This work was supported by the National Key R&D Program of China (Grant No. 2023YFE0106300), National Natural Science Foundation of China (Grant No. 62250710163, 62376115, 62276223), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), and the Research Grants Council of the Hong Kong Special Administrative Region, China [GRF Project No. CityU 11215622].Disclosure of Interests. The authors have no competing interests to declare that are relevant to the content of this article.
EI入藏号
20243917095145
EI主题词
Consensus algorithm ; Evolutionary algorithms ; Multiobjective optimization ; Pareto principle ; Traveling salesman problem
EI分类号
:1103.3 ; :1105.3 ; :1106.1 ; :1201.5 ; :1201.7 ; :1201.8
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/841046
专题南方科技大学
作者单位
1.City University of Hong Kong, Hong Kong
2.Southern University of Science and Technology, Shenzhen; 518055, China
3.The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Gong, Cheng,Pang, Lie Meng,Zhang, Qingfu,et al. Three Objectives Degrade the Convergence Ability of Dominance-Based Multi-objective Evolutionary Algorithms[C]:Springer Science and Business Media Deutschland GmbH,2024:52-67.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gong, Cheng]的文章
[Pang, Lie Meng]的文章
[Zhang, Qingfu]的文章
百度学术
百度学术中相似的文章
[Gong, Cheng]的文章
[Pang, Lie Meng]的文章
[Zhang, Qingfu]的文章
必应学术
必应学术中相似的文章
[Gong, Cheng]的文章
[Pang, Lie Meng]的文章
[Zhang, Qingfu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。