中文版 | English
题名

A Variable-Length Fuzzy Set Representation for Learning Fuzzy-Classifier Systems

作者
通讯作者Shiraishi, Hiroki
DOI
发表日期
2024
会议名称
18th International Conference on Parallel Problem Solving from Nature, PPSN 2024
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031700705
会议录名称
卷号
15150 LNCS
页码
386-402
会议日期
September 14, 2024 - September 18, 2024
会议地点
Hagenberg, Austria
出版者
摘要
This paper introduces a novel Learning Fuzzy-Classifier System (LFCS) that incorporates variable-length fuzzy sets in rule antecedents to enhance classification accuracy and mitigate overfitting in real-world data scenarios. Traditional LFCSs utilize fixed-length fuzzy sets, which can limit their performance, especially when the rule set size is restricted in high-dimensional input space. The proposed algorithm, Fuzzy-UCSv (i.e., the Fuzzy-UCS classifier system with a variable-length fuzzy set representation), addresses these limitations by allowing the number of fuzzy sets per dimension in rule-antecedents to vary. Fuzzy-UCSv aims to tackle two primary challenges identified in LFCS: the unnecessary optimization of membership functions for irrelevant features and the difficulty in forming optimal classification boundaries with a single membership function per feature. By optimizing the number of membership functions for each rule using an evolutionary algorithm, Fuzzy-UCSv acquires rules that ignore non-contributing features and effectively cover complex input spaces, significantly improving test accuracy without increasing the risk of overfitting. Experimental results demonstrate that Fuzzy-UCSv outperforms conventional Fuzzy-UCS and other machine learning techniques in terms of test accuracy.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
学校署名
其他
语种
英语
收录类别
资助项目
This work was supported by Japan Society for the Promotion of Science KAKENHI (Grant No. JP23KJ0993), National Natural Science Foundation of China (Grant No. 62250710163, 62376115), and Guangdong Provincial Key Laboratory (Grant No. 2020B121201001).
EI入藏号
20243917093910
EI主题词
Adversarial machine learning ; Fuzzy inference ; Fuzzy rules ; Fuzzy set theory ; Self-supervised learning ; Supervised learning
EI分类号
:1101.1 ; :1101.2 ; :1101.2.1 ; :1102.1 ; :1201 ; :1201.8
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/841048
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Department of Electrical Engineering and Computer Science, Yokohama National University, Yokohama; 240-8501, Japan
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Shiraishi, Hiroki,Ye, Rongguang,Ishibuchi, Hisao,et al. A Variable-Length Fuzzy Set Representation for Learning Fuzzy-Classifier Systems[C]:Springer Science and Business Media Deutschland GmbH,2024:386-402.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shiraishi, Hiroki]的文章
[Ye, Rongguang]的文章
[Ishibuchi, Hisao]的文章
百度学术
百度学术中相似的文章
[Shiraishi, Hiroki]的文章
[Ye, Rongguang]的文章
[Ishibuchi, Hisao]的文章
必应学术
必应学术中相似的文章
[Shiraishi, Hiroki]的文章
[Ye, Rongguang]的文章
[Ishibuchi, Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。