中文版 | English
题名

Subsidence detection in southwest Guangdong–Hong Kong–Macao Greater Bay Area using InSAR with GNSS corrected tropospheric delays

作者
通讯作者Chen, Kejie
发表日期
2024
DOI
发表期刊
ISSN
0273-1177
EISSN
1879-1948
摘要
As one of the biggest bay areas in the world, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is subject to subsidence due to thick sedimentary. In this study, we combine 154 Sentinel-1 A/B images acquired between 2017 and 2022 with Global Navigation Satellite System (GNSS) observations to characterize the subsidence in southwestern GBA. Specifically, we use GNSS to establish the Iterative Tropospheric Decomposition (ITD) model for zenith tropospheric delay correction and the model is improved using random forest algorithm to alleviate errors caused by unreasonable interpolation methods, showing better performance than Generic Tropospheric Correction Online Service (GACOS) product. At GNSS stations with complete data, the improved model utilizing GNSS data achieves a Pearson correlation coefficient of 0.659, in contrast to a coefficient of only 0.434 using GACOS. The maximum subsidence rate detected is up to 11.32 cm/year in Zhuhai, accompanied by noticeable seasonal variations correlated with precipitation. In addition to the sediment consolidation and compaction, human activities such as agriculture, construction, and land reclamation further exacerbate subsidence in the GBA. This study enhances the utility of GNSS in improving tropospheric delay correction performance and providing more accurate observations of subsidence.
© 2024 COSPAR
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
This research was funded by the Guangdong Natural Science Fund 2023 General Programme (Grant No. 2023A1515011062) and the Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology (2022B1212010002). The authors would like to thank European Space Agency (ESA) for providing free and open Sentinel-1 A/B data, and Institute of Surveying and Mapping of Land and Resources Department of Guangdong Province for GNSS data in Guangdong Province.
出版者
EI入藏号
20243917107394
EI主题词
Deforestation ; Global positioning system ; Image acquisition ; Random errors ; Random forests ; Tropics
EI分类号
:1101.2 ; :1106 ; :435.1 ; Meteorology:443 ; Atmospheric Properties:443.1 ; :731.1.1 ; Agricultural Machinery and Equipment:821.1
来源库
EV Compendex
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/841053
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen; 518055, China
2.Now at China Earthquake Networks Center, Beijing; 100045, China
3.Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology, Southern University of Science and Technology, Shenzhen; 518055, China
4.School of Earth and Space Sciences, Peking University, Beijing; 100871, China
5.State Key Laboratory of Space-Earth Integrated Information Technology, Beijing; 100095, China
6.Beijing Institute of Satellite Information Engineering, Beijing; 100095, China
7.Guangdong Geological Environment Monitoring Station, Guangzhou; 510599, China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Lin, Chaoqi,Chen, Kejie,Liang, Cunren,等. Subsidence detection in southwest Guangdong–Hong Kong–Macao Greater Bay Area using InSAR with GNSS corrected tropospheric delays[J]. Advances in Space Research,2024.
APA
Lin, Chaoqi.,Chen, Kejie.,Liang, Cunren.,Zhu, Hai.,Cui, Wenfeng.,...&Qing, Zhanhui.(2024).Subsidence detection in southwest Guangdong–Hong Kong–Macao Greater Bay Area using InSAR with GNSS corrected tropospheric delays.Advances in Space Research.
MLA
Lin, Chaoqi,et al."Subsidence detection in southwest Guangdong–Hong Kong–Macao Greater Bay Area using InSAR with GNSS corrected tropospheric delays".Advances in Space Research (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin, Chaoqi]的文章
[Chen, Kejie]的文章
[Liang, Cunren]的文章
百度学术
百度学术中相似的文章
[Lin, Chaoqi]的文章
[Chen, Kejie]的文章
[Liang, Cunren]的文章
必应学术
必应学术中相似的文章
[Lin, Chaoqi]的文章
[Chen, Kejie]的文章
[Liang, Cunren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。