题名 | A common generalization of hypercube partitions and ovoids in polar spaces |
作者 | |
通讯作者 | Ihringer, Ferdinand |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 0925-1022
|
EISSN | 1573-7586
|
摘要 | We investigate what we call generalized ovoids, that is families of totally isotropic subspaces of finite classical polar spaces such that each maximal totally isotropic subspace contains precisely one member of that family. This is a generalization of ovoids in polar spaces as well as the natural q-analog of a subcube partition of the hypercube (which can be seen as a polar space with q=1). Our main result proves that a generalized ovoid of k-spaces in polar spaces of large rank does not exist. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
出版者 | |
EI入藏号 | 20243817074024
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/841075 |
专题 | 理学院_数学系 南方科技大学 |
作者单位 | 1.Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Ghent; 9000, Belgium 2.Department of Mathematics, Southern University of Science and Technology, No. 1088 Xueyuan Blvd, Nanshan District, Guangdong, Shenzhen; 518055, China 3.Department of Mathematics, Paderborn University, Warburger Str. 100, Paderborn; 33098, Germany |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
D’haeseleer, Jozefien,Ihringer, Ferdinand,Schmidt, Kai-Uwe. A common generalization of hypercube partitions and ovoids in polar spaces[J]. Designs, Codes, and Cryptography,2024.
|
APA |
D’haeseleer, Jozefien,Ihringer, Ferdinand,&Schmidt, Kai-Uwe.(2024).A common generalization of hypercube partitions and ovoids in polar spaces.Designs, Codes, and Cryptography.
|
MLA |
D’haeseleer, Jozefien,et al."A common generalization of hypercube partitions and ovoids in polar spaces".Designs, Codes, and Cryptography (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论