中文版 | English
题名

基于视觉方法的柔性多面体网络本体感知技术及其机器人操控研究

其他题名
PROPRIOCEPTIVE SENSING OF SOFT POLYHEDRAL NETWORKS AND ROBOT MANIPULATION LEARNING BASED ON VISUAL METHODS
姓名
姓名拼音
LIU Xiaobo
学号
11930807
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
宋超阳
导师单位
机械与能源工程系
论文答辩日期
2024-08-28
论文提交日期
2024-10-09
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

物品操作是机器人与物体进行交互所需的最基本能力,机器人夹爪作为与物 品的第一物理交互界面,直接影响到机器人在各种应用场景下的灵活性和效率。柔 性夹爪相较于传统的刚性夹爪,具备较高的灵活性、环境适应性和人机交互性。它 能够实现对不规则物品的稳定抓取和易碎物体的无损抓取,在机器人抓取、操作场 景中得到广泛应用。但是其欠驱动特性,使得柔性手指的控制和感知变得更加复 杂和具有挑战性。本文围绕操控任务中柔性手指的本体感知及物品感知这一课题, 提出了一类全向自适应柔性手指的设计方法,名为柔性多面体网络 (Soft Polyhedral Networks),分别就柔性手指的粘弹性机理、本体感知、操控学习基准实验系统和 手中物品位姿估计等问题进行了研究。

通过在手指内增加 AruCo 标记和相机,观测手指变形研究了其本体感知问题。 基于 Abaqus 有限元仿真平台,对柔性手指进行建模仿真,并采集了手指变形数据, 通过变形数据训练 MLP 网络重建手指变形,并将其迁移到实际物理交互中,展示 了其 Sim2Real 的能力。进一步分析了其静态及动态粘弹性特征,与现有柔性传感 器相比,考虑了粘弹性特征的模型,具有更高的力预测精度。

为了解决操控过程中的物品状态不确定性问题,基于柔性手指及指内视觉,提 出了一种手中物品位姿估计及分类方法。该方法适用于不同类型夹爪及触觉传感 器,在二指夹爪上进行了测试,获得了很高的分类精度和位置精度。

面向操控任务学习中的数据生成及标准化问题,提出了机器人操控任务的基 准实验系统,并建立了一个易于共享和复现的机器人操作数据采集平台 DeepClaw, 可低成本的实现操控轨迹及交互力的采集,并制作了一个操控任务数据集。

在物品操控问题中,通过观测手指变形赋予了柔性手指感知接触状态的能力, 成功实现了实时接触力感知与变形感知,继而实现了物品实时状态估计。最终操 控实验验证了感知技术的有效性,为物品的灵巧操控提供了技术基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-12
参考文献列表

[1] CHOI C, DEL PRETO J, RUS D. Using vision for pre-and post-grasping object localization for soft hands[C]//2016 International Symposium on Experimental Robotics. Springer, 2017: 601-612.
[2] GÓMEZ-DE GABRIEL J M, WURDEMANN H A. Adaptive underactuated finger with active rolling surface[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8253-8260.
[3] FANG B, SUN F, WU L, et al. Multimode grasping soft gripper achieved by layer jamming structure and tendon-driven mechanism[J]. Soft Robotics, 2022, 9(2): 233-249.
[4] HUSSAIN I, AL-KETAN O, RENDA F, et al. Design and Prototyping Soft–Rigid Tendon-Driven Modular Grippers Using Interpenetrating Phase Composites Materials[J]. The International Journal of Robotics Research, 2020, 39(14): 1635-1646.
[5] 李泳耀, 江磊, 刘宇飞, 等. 基于抓取刚度增强的刚软耦合仿人手设计与实验[J]. 机械工程学报, 2023, 5.
[6] KIM H I, HAN M W, SONG S H, et al. Soft morphing hand driven by SMA tendon wire[J]. Composites Part B: Engineering, 2016, 105: 138-148.
[7] RODRIGUE H, WANG W, KIM D R, et al. Curved shape memory alloy-based soft actuators and application to soft gripper[J]. Composite Structures, 2017, 176: 398-406.
[8] WANG W, AHN S H. Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping[J]. Soft robotics, 2017, 4(4): 379-389.
[9] HU Q, DONG E, SUN D. Soft gripper design based on the integration of flat dry adhesive, soft actuator, and microspine[J]. IEEE Transactions on Robotics, 2021, 37(4): 1065-1080.
[10] ZHANG Y, LIU T, LAN X, et al. A compliant robotic grip structure based on shape memory polymer composite[J]. Composites Communications, 2022, 36: 101383.
[11] YANG Y, CHEN Y, WEI Y, et al. Novel design and three-dimensional printing of variable stiffness robotic grippers[J]. Journal of Mechanisms and Robotics, 2016, 8(6): 061010.
[12] YANG Y, ZHU H, LIU J, et al. A novel variable stiffness and tunable bending shape soft robotic finger based on thermoresponsive polymers[J]. IEEE Transactions on Instrumentation and Measurement, 2023.
[13] BEHL M, KRATZ K, ZOTZMANN J, et al. Reversible bidirectional shape-memory polymers[J]. Advanced Materials (Deerfield Beach, Fla.), 2013, 25(32): 4466-4469.
[14] ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie International Editiion, 2011.
[15] WU Y, ZENG G, XU J, et al. A bioinspired multi-knuckle dexterous pneumatic soft finger[J]. Sensors and Actuators A: Physical, 2023, 350: 114105.
[16] SUN T, CHEN Y, HAN T, et al. A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101848.
[17] YAN J, XU Z, SHI P, et al. A human-inspired soft finger with dual-mode morphing enabled by variable stiffness mechanism[J]. Soft Robotics, 2022, 9(2): 399-411.
[18] DINAKARAN V P, BALASUBRAMANIYAN M P, LE Q H, et al. A novel multi objective constraints based industrial gripper design with optimized stiffness for object grasping[J]. Robotics and Autonomous Systems, 2023, 160: 104303.
[19] TAWK C, GAO Y, MUTLU R, et al. Fully 3D printed monolithic soft gripper with high conformal grasping capability[C]//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2019: 1139-1144.
[20] LAU G K, HENG K R, AHMED A S, et al. Dielectric elastomer fingers for versatile grasping and nimble pinching[J]. Applied Physics Letters, 2017, 110(18).
[21] LU C, ZHANG X. Ionic Polymer–Metal Composites: From Material Engineering to Flexible Applications[J]. Accounts of Chemical Research, 2023, 57(1): 131-139.
[22] HU X, CHEN H, TANG C, et al. A Variable Stiffness Finger Based on Low Melting Point Alloys[C/OL]//2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). 2023: 641-645. DOI: 10.1109/ICIEA58696.2023.10241380.
[23] PFAFF O, SIMEONOV S, CIROVIC I, et al. Application of fin ray effect approach for production process automation[J]. Annals of DAAAM & Proceedings, 2011, 22(1): 1247-1249.
[24] CROOKS W, ROZEN-LEVY S, TRIMMER B, et al. Passive gripper inspired by Manduca sexta and the Fin Ray® Effect[J]. International Journal of Advanced Robotic Systems, 2017, 14(4): 1729881417721155.
[25] FU J, LIN H, PRATHYUSH I, et al. A novel discrete variable stiffness gripper based on the fin ray effect[C]//International Conference on Intelligent Robotics and Applications. Springer, 2022: 791-802.
[26] DENG Z, LI M. Learning optimal fin-ray finger design for soft grasping[J]. Frontiers in Robotics and AI, 2021, 7: 590076.
[27] ELGENEIDY K, LIGHTBODY P, PEARSON S, et al. Characterising 3D-printed soft fin ray robotic fingers with layer jamming capability for delicate grasping[C]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2019: 143-148.
[28] ELGENEIDY K, FANSA A, HUSSAIN I, et al. Structural optimization of adaptive soft fin ray fingers with variable stiffening capability[C]//2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2020: 779-784.
[29] CHEN R, SONG R, ZHANG Z, et al. Bio-inspired shape-adaptive soft robotic grippers augmented with electroadhesion functionality[J]. Soft robotics, 2019, 6(6): 701-712.
[30] LUO C, YANG S, ZHANG W, et al. MPJ hand: a self-adaptive underactuated hand with flexible fingers of multiple passive joints[C]//2016 international conference on advanced robotics and mechatronics (ICARM). IEEE, 2016: 184-189.
[31] PETKOVIĆ D, D. PAVLOVIĆ N, SHAMSHIRBAND S, et al. Development of a new type of passively adaptive compliant gripper[J]. Industrial Robot: An International Journal, 2013, 40(6): 610-623.
[32] LIU C H, HUANG G F, CHIU C H, et al. Topology synthesis and optimal design of an adaptive compliant gripper to maximize output displacement[J]. Journal of Intelligent & RoboticSystems, 2018, 90: 287-304.
[33] WAN F, WANG H, WU J, et al. A reconfigurable design for omni-adaptive grasp learning[J].IEEE Robotics and Automation Letters, 2020, 5(3): 4210-4217.
[34] CHU A H, CHENG T, MURALT A, et al. A passively conforming soft robotic gripper withthree-dimensional negative bending stiffness fingers[J]. Soft Robotics, 2023, 10(3): 556-567.
[35] CAI Y, YUAN S. In-hand manipulation in power grasp: Design of an adaptive robot hand withactive surfaces[C]//2023 IEEE International Conference on Robotics and Automation (ICRA).IEEE, 2023: 10296-10302.
[36] XU W, ZHANG H, YUAN H, et al. A Compliant Adaptive Gripper and Its Intrinsic ForceSensing Method[J]. IEEE Transactions on Robotics, 2021, 37(5): 1584-1603.
[37] SHAN X, BIRGLEN L. Modeling and Analysis of Soft Robotic Fingers Using the Fin RayEffect[J]. The International Journal of Robotics Research, 2020, 39(14): 1686-1705.
[38] CHEN G, TANG S, XU S, et al. Intrinsic Contact Sensing and Object Perception of an AdaptiveFin-Ray Gripper Integrating Compact Deflection Sensors[J]. IEEE Transactions on Robotics,2023.
[39] GOMES D F, LIN Z, LUO S. GelTip: A finger-shaped optical tactile sensor for robotic manipulation[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2020: 9903-9909.
[40] SUN H, KUCHENBECKER K J, MARTIUS G. A Soft Thumb-Sized Vision-Based Sensor withAccurate All-Round Force Perception[J]. Nature Machine Intelligence, 2022, 4(2): 135-145.
[41] TIPPUR M H, ADELSON E H. GelSight360: An omnidirectional camera-based tactile sensorfor dexterous robotic manipulation[C]//2023 IEEE International Conference on Soft Robotics(RoboSoft). IEEE, 2023: 1-8.
[42] THURUTHEL T G, SHIH B, LASCHI C, et al. Soft Robot Perception Using Embedded SoftSensors and Recurrent Neural Networks[J]. Science Robotics, 2019, 4(26): eaav1488.
[43] TRUBY R L, WEHNER M, GROSSKOPF A K, et al. Soft somatosensitive actuators via embedded 3D printing[J]. Advanced Materials, 2018, 30(15): 1706383.
[44] WAN F, LIU X, GUO N, et al. Visual Learning Towards Soft Robot Force Control using a3D Metamaterial with Differential Stiffness[C]//Conference on Robot Learning. PMLR, 2022:1269-1278.
[45] MAHSERECI Y, SALLER S, RICHTER H, et al. An ultra-thin flexible CMOS stress sensordemonstrated on an adaptive robotic gripper[J]. IEEE Journal of Solid-State Circuits, 2015, 51(1): 273-280.
[46] HOFER M, SFERRAZZA C, D’ANDREA R. A vision-based sensing approach for a sphericalsoft robotic arm[J]. Frontiers in Robotics and AI, 2021, 8: 630935.
[47] YUAN W, SRINIVASAN M A, ADELSON E H. Estimating object hardness with a gelsighttouch sensor[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). IEEE, 2016: 208-215.
[48] WANG Y, WU X, MEI D, et al. Flexible tactile sensor array for distributed tactile sensingand slip detection in robotic hand grasping[J]. Sensors and Actuators A: Physical, 2019, 297:111512.
[49] LI J, DONG S, ADELSON E. Slip detection with combined tactile and visual information[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018:7772-7777.
[50] LIU H, YU Y, SUN F, et al. Visual–tactile fusion for object recognition[J]. IEEE Transactionson Automation Science and Engineering, 2016, 14(2): 996-1008.
[51] CHEN Y, GUO S, LI C, et al. Size recognition and adaptive grasping using an integration ofactuating and sensing soft pneumatic gripper[J]. Robotics and Autonomous Systems, 2018,104: 14-24.
[52] LI G, LIU S, WANG L, et al. Skin-inspired quadruple tactile sensors integrated on a robot handenable object recognition[J]. Science Robotics, 2020, 5(49): eabc8134.
[53] KUPPUSWAMY N, ALSPACH A, UTTAMCHANDANI A, et al. Soft-bubble grippers forrobust and perceptive manipulation[C]//2020 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS). IEEE, 2020: 9917-9924.
[54] YANG L, HAN X, GUO W, et al. Learning-based optoelectronically innervated tactile fingerfor rigid-soft interactive grasping[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3817-3824.
[55] DIKHALE S, PATEL K, DHINGRA D, et al. Visuotactile 6d pose estimation of an in-handobject using vision and tactile sensor data[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2148-2155.
[56] KHAZATSKY A, PERTSCH K, NAIR S, et al. DROID: A large-scale in-the-wild robot manipulation dataset[C]//Robotics: Science and Systems. 2024.
[57] FU Z, ZHAO T Z, FINN C. Mobile ALOHA: Learning Bimanual Mobile Manipulation withLow-Cost Whole-Body Teleoperation[C]//arXiv. 2024.
[58] CHI C, XU Z, PAN C, et al. Universal Manipulation Interface: In-The-Wild Robot TeachingWithout In-The-Wild Robots[C]//Proceedings of Robotics: Science and Systems (RSS). 2024.
[59] HUANG Y, SUN Y. A dataset of daily interactive manipulation[J]. The International Journalof Robotics Research, 2019, 38(8): 879-886.
[60] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[61] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[62] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale imagerecognition[C]//3rd International Conference on Learning Representations (ICLR 2015). Computational and Biological Learning Society, 2015.
[63] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015: 234-241.
[64] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of theIEEE conference on computer vision and pattern recognition. 2015: 1-9.
[65] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time objectdetection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016: 779-788.
[66] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[67] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//ComputerVision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,2016, Proceedings, Part I 14. Springer, 2016: 21-37.
[68] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computervision. 2015: 1440-1448.
[69] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with regionproposal networks[J]. Advances in neural information processing systems, 2015, 28.
[70] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE internationalconference on computer vision. 2017: 2961-2969.
[71] QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in ametric space[J]. Advances in neural information processing systems, 2017, 30.
[72] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis withlatent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision andpattern recognition. 2022: 10684-10695.
[73] DONG Q, CAO C, FU Y. Incremental transformer structure enhanced image inpainting withmasking positional encoding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 11358-11368.
[74] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducinginternal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
[75] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[76] MASON M T. Toward robotic manipulation[J]. Annual Review of Control, Robotics, andAutonomous Systems, 2018, 1: 1-28.
[77] HARRIS C, STEPHENS M, et al. A combined corner and edge detector[C]//Alvey visionconference: Vol. 15. Manchester, UK, 1988: 10-5244.
[78] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the seventh IEEE international conference on computer vision: Vol. 2. Ieee, 1999: 1150-1157.
[79] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computervision and image understanding, 2008, 110(3): 346-359.
[80] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]//2011 International conference on computer vision. Ieee, 2011: 2564-2571.
[81] RUSU R B, MARTON Z C, BLODOW N, et al. Persistent point feature histograms for 3Dpoint clouds[C]//Proc 10th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany.2008: 119-128.
[82] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE international conference on robotics and automation. IEEE, 2009: 3212-3217.
[83] SALTI S, TOMBARI F, DI STEFANO L. SHOT: Unique signatures of histograms for surfaceand texture description[J]. Computer Vision and Image Understanding, 2014, 125: 251-264.
[84] GUO Y, SOHEL F, BENNAMOUN M, et al. Rotational projection statistics for 3D local surfacedescription and object recognition[J]. International journal of computer vision, 2013, 105: 63-86.
[85] DROST B, ULRICH M, NAVAB N, et al. Model globally, match locally: Efficient and robust3D object recognition[C]//2010 IEEE computer society conference on computer vision and pattern recognition. Ieee, 2010: 998-1005.
[86] MUJA M, LOWE D. Flann-fast library for approximate nearest neighbors user manual[J].Computer Science Department, University of British Columbia, Vancouver, BC, Canada, 2009,5: 6.
[87] LI S, XU C, XIE M. A robust O (n) solution to the perspective-n-point problem[J]. IEEEtransactions on pattern analysis and machine intelligence, 2012, 34(7): 1444-1450.
[88] BESL P J, MCKAY N D. A Method for Registration of 3-D Shapes[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
[89] WANG G, MANHARDT F, TOMBARI F, et al. Gdr-net: Geometry-guided direct regressionnetwork for monocular 6d object pose estimation[C]//Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition. 2021: 16611-16621.
[90] KRULL A, BRACHMANN E, MICHEL F, et al. Learning analysis-by-synthesis for 6D poseestimation in RGB-D images[C]//Proceedings of the IEEE international conference on computervision. 2015: 954-962.
[91] WANG C, XU D, ZHU Y, et al. Densefusion: 6d object pose estimation by iterative dense fusion[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.2019: 3343-3352.
[92] AOKI Y, GOFORTH H, SRIVATSAN R A, et al. Pointnetlk: Robust & efficient point cloudregistration using pointnet[C]//Proceedings of the IEEE/CVF conference on computer visionand pattern recognition. 2019: 7163-7172.
[93] ZHAO H, WEI S, SHI D, et al. Learning Symmetry-Aware Geometry Correspondences for 6DObject Pose Estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 14045-14054.
[94] VON DRIGALSKI F, TANIGUCHI S, LEE R, et al. Contact-based in-hand pose estimationusing bayesian state estimation and particle filtering[C]//2020 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE, 2020: 7294-7299.
[95] WEN B, MITASH C, SOORIAN S, et al. Robust, occlusion-aware pose estimation for objectsgrasped by adaptive hands[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 6210-6217.
[96] PFANNE M, CHALON M, STULP F, et al. Fusing joint measurements and visual features forin-hand object pose estimation[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3497-3504.
[97] ÁLVAREZ D, ROA M A, MORENO L. Tactile-based in-hand object pose estimation[C]//Iberian Robotics conference. Springer, 2017: 716-728.
[98] TU Y, JIANG J, LI S, et al. PoseFusion: Robust Object-in-Hand Pose Estimation with SelectLSTM[A]. 2023.
[99] VILLALONGA M B, RODRIGUEZ A, LIM B, et al. Tactile object pose estimation from thefirst touch with geometric contact rendering[C]//Conference on Robot Learning. PMLR, 2021:1015-1029.
[100] YANG S, KIM W D, PARK H, et al. In-Hand Object Classification and Pose Estimation WithSim-to-Real Tactile Transfer for Robotic Manipulation[J]. IEEE Robotics and Automation Letters, 2023, 9(1): 659-666.
[101] LIU X, HAN X, GUO N, et al. Bio-Inspired Proprioceptive Touch of a Soft Finger with InnerFinger Kinesthetic Perception[J]. Biomimetics, 2023, 8(6): 501.
[102] LIU X, HAN X, HONG W, et al. Proprioceptive learning with soft polyhedral networks[J]. TheInternational Journal of Robotics Research, 2024: 02783649241238765.
[103] DEMAINE E D, O’ROURKE J. Geometric Folding Algorithms: Linkages, Origami, Polyhedra[M]. Cambridge University Press, 2007.
[104] YANG L, WAN F, WANG H, et al. Rigid-Soft interactive learning for robust grasping[J]. IEEERobotics and Automation Letters, 2020, 5(2): 1720-1727.
[105] YANG Z, GE S, WAN F, et al. Scalable tactile sensing for an omni-adaptive soft robot finger[C]//2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2020: 572-577.
[106] YI J, CHEN X, SONG C, et al. Customizable Three-Dimensional-Printed Origami Soft RoboticJoint With Effective Behavior Shaping for Safe Interactions[J]. IEEE Transactions on Robotics,2019, 35(1): 114-123.
[107] TEKIN B, BOGO F, POLLEFEYS M. H+ o: Unified egocentric recognition of 3d hand-objectposes and interactions[C/OL]//Proceedings of the IEEE/CVF conference on computer visionand pattern recognition. 2019: 4511-4520. DOI: 10.1109/CVPR.2019.00464.
[108] HASSON Y, VAROL G, TZIONAS D, et al. Learning joint reconstruction of hands and manipulated objects[C/OL]//Proceedings of the IEEE/CVF conference on computer vision and patternrecognition. 2019: 11807-11816. DOI: 10.1109/CVPR.2019.01208.
[109] HAMPALI S, SARKAR S D, RAD M, et al. Keypoint transformer: Solving joint identification in challenging hands and object interactions for accurate 3d pose estimation[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022:11090-11100. DOI: 10.1109/CVPR52688.2022.01081.
[110] ZIMMERMANN C, CEYLAN D, YANG J, et al. Freihand: A dataset for markerless capture ofhand pose and shape from single rgb images[C/OL]//Proceedings of the IEEE/CVF InternationalConference on Computer Vision. 2019: 813-822. DOI: 10.1109/ICCV.2019.00090.
[111] CHEN X, LIU Y, DONG Y, et al. Mobrecon: Mobile-friendly hand mesh reconstruction frommonocular image[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition. 2022: 20544-20554. DOI: 10.1109/CVPR52688.2022.01989.
[112] YUAN W, DONG S, ADELSON E H. Gelsight: High-resolution robot tactile sensors for estimating geometry and force[J]. Sensors, 2017, 17(12): 2762.
[113] LAMBETA M, CHOU P W, TIAN S, et al. Digit: A novel design for a low-cost compacthigh-resolution tactile sensor with application to in-hand manipulation[J]. IEEE Robotics andAutomation Letters, 2020, 5(3): 3838-3845.
[114] YAMAGUCHI A, ATKESON C G. Combining finger vision and optical tactile sensing: Reducing and handling errors while cutting vegetables[C]//2016 IEEE-RAS 16th InternationalConference on Humanoid Robots (Humanoids). IEEE, 2016: 1045-1051.
[115] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning Phrase Representationsusing RNN Encoder–Decoder for Statistical Machine Translation[C]//Proceedings of the 2014Conference on Empirical Methods in Natural Language Processing (EMNLP). Association forComputational Linguistics, 2014: 1724.
[116] SATTLER T, MADDERN W, TOFT C, et al. Benchmarking 6dof outdoor visual localizationin changing conditions[C]//Proceedings of the IEEE conference on computer vision and patternrecognition. 2018: 8601-8610.
[117] GAO Y, MATSUOKA S, WAN W, et al. In-Hand Pose Estimation Using Hand-Mounted RGBCameras and Visuotactile Sensors[J]. IEEE Access, 2023, 11: 17218-17232.
[118] FISHEL J A, LOEB G E. Sensing tactile microvibrations with the BioTac—Comparison withhuman sensitivity[C]//2012 4th IEEE RAS & EMBS international conference on biomedicalrobotics and biomechatronics (BioRob). IEEE, 2012: 1122-1127.
[119] YAN Y, HU Z, YANG Z, et al. Soft magnetic skin for super-resolution tactile sensing with forceself-decoupling[J]. Science Robotics, 2021, 6(51): eabc8801.
[120] ARGALL B D, CHERNOVA S, VELOSO M, et al. A survey of robot learning from demonstration[J/OL]. Robotics and Autonomous Systems, 2009, 57(5): 469 - 483. DOI: https://doi.org/10.1016/j.robot.2008.10.024.
[121] KROEMER O, NIEKUM S, KONIDARIS G. A Review of Robot Learning for Manipulation:Challenges, Representations, and Algorithms[A]. 2019. arXiv: 1907.03146.
[122] OSA T, PAJARINEN J, NEUMANN G, et al. An Algorithmic Perspective on Imitation Learning[Z]. 2018.
[123] KAPLAN H, HILL K, LANCASTER J B, et al. A theory of human life history evolution: Diet,intelligence, and longevity[J]. Evolutionary Anthropology, 2000, 9(4): 156-185.
[124] BROWN S, SAMMUT C. Tool Use Learning in Robots[Z]. 2011.
[125] CHRISTEN S, STEVSIC S, HILLIGES O. Demonstration-Guided Deep Reinforcement Learning of Control Policies for Dexterous Human-Robot Interaction[A]. 2019.
[126] CHU V, AKGUN B, THOMAZ A L. Learning haptic affordances from demonstration andhuman-guided exploration[Z]. 2016: 119-125.
[127] BILLARD A, KRAGIC D. Trends and challenges in robot manipulation[J/OL]. Science, 2019,364(6446). DOI: 10.1126/science.aat8414.
[128] FAZELI N, OLLER M, WU J, et al. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion: Vol. 4[Z]. 2019.
[129] DAUTENHAHN K, NEHANIV C L. Imitation in Animals and Artifacts[Z]. 2002.
[130] GEALY D V, MCKINLEY S, YI B, et al. Quasi-Direct Drive for Low-Cost Compliant RoboticManipulation[J/OL]. 2019 International Conference on Robotics and Automation (ICRA),2019. DOI: 10.1109/icra.2019.8794236.
[131] Calli B, Walsman A, Singh A, et al. Benchmarking in Manipulation Research: Using the YaleCMU-Berkeley Object and Model Set[J]. IEEE Robotics Automation Magazine, 2015, 22(3):36-52.
[132] HUANG O W, CHENG H N, CHAN T W. Number jigsaw puzzle: A mathematical puzzle gamefor facilitating players’ problem-solving strategies[C]//2007 First IEEE International Workshopon Digital Game and Intelligent Toy Enhanced Learning (DIGITEL’07). IEEE, 2007: 130-134.
[133] LIU X, WAN F, GE S, et al. Jigsaw-based Benchmarking for Learning Robotic Manipulation[C]//2023 International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE,2023: 124-130.
[134] EVERINGHAM M, VAN GOOL L, WILLIAMS C K, et al. The pascal visual object classes(voc) challenge[J]. International journal of computer vision, 2010, 88: 303-338.
[135] GUPTA A, MURALI A, GANDHI D P, et al. Robot learning in homes: Improving generalization and reducing dataset bias[J]. Advances in neural information processing systems, 2018,31.
[136] JIANG Y, MOSESON S, SAXENA A. Efficient grasping from rgbd images: Learning using anew rectangle representation[C]//2011 IEEE International conference on robotics and automation. IEEE, 2011: 3304-3311.
[137] KEHL W, MANHARDT F, TOMBARI F, et al. Ssd-6d: Making rgb-based 3d detection and 6dpose estimation great again[C]//Proceedings of the IEEE international conference on computervision. 2017: 1521-1529.
[138] WANG H, LIU X, QIU N, et al. DeepClaw 2.0: A Data Collection Platform for LearningHuman Manipulation[J]. Frontiers in Robotics and AI, 2022, 9: 787291.
[139] SUZUI K, YOSHIYASU Y, GABAS A, et al. Toward 6 DOF Object Pose Estimation withMinimum Dataset[C]//2019 IEEE/SICE International Symposium on System Integration (SII).IEEE, 2019: 462-467.
[140] MINICHINO J. Community experience distilled: Learning OpenCV 3 Computer Vision withPython: Unleash the Power of Computer Vision with Python Using OpenCV[M]. Packt Publishing, 2015.
[141] MARCHAND E, SPINDLER F, CHAUMETTE F. ViSP for visual servoing: a generic softwareplatform with a wide class of robot control skills[J]. IEEE Robotics and Automation Magazine,2005, 12(4): 40-52.
[142] YUAN W, LI R, SRINIVASAN M A, et al. Measurement of shear and slip with a GelSighttactile sensor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA).IEEE, 2015: 304-311.
[143] WU T, DONG Y, LIU X, et al. Vision-based tactile intelligence with soft robotic metamaterial[J]. Materials & Design, 2024, 238: 112629.
[144] SHIMOGA K, GOLDENBERG A. Soft Robotic Fingertips: Part I: A Comparison of Construction Materials[J]. The International Journal of Robotics Research, 1996, 15(4): 320-334.
[145] SHIMOGA K, GOLDENBERG A. Soft Robotic Fingertips: Part II: Modeling and ImpedanceRegulation[J]. The International Journal of Robotics Research, 1996, 15(4): 335-350.
[146] LIU Z, SONG L, HOU Z, et al. Screw insertion method in peg-in-hole assembly for axialfriction reduction[J]. IEEE Access, 2019, 7: 148313-148325.
[147] TANG T, LIN H C, ZHAO Y, et al. Autonomous alignment of peg and hole by force/torquemeasurement for robotic assembly[C]//2016 IEEE international conference on automation science and engineering (CASE). IEEE, 2016: 162-167.
[148] TSUJI T, OHKUMA J, SAKAINO S. Dynamic object manipulation considering contact condition of robot with tool[J]. IEEE Transactions on Industrial Electronics, 2015, 63(3): 1972-1980.
[149] MA D, RODRIGUEZ A. Friction variability in planar pushing data: Anisotropic friction anddata-collection bias[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3232-3239.
[150] AGER A L, BORMS D, DESCHEPPER L, et al. Proprioception: How is it Affected by ShoulderPain? A Systematic Review[J]. Journal of Hand Therapy, 2020, 33(4): 507-516.
[151] SCOTT M G. Measurement of kinesthesis[J]. Research Quarterly. American Association forHealth, Physical Education and Recreation, 1955, 26(3): 324-341.
[152] GARRIDO-JURADO S, MUÑOZ-SALINAS R, MADRID-CUEVAS F J, et al. Automaticgeneration and detection of highly reliable fiducial markers under occlusion[J]. Pattern Recognition, 2014, 47(6): 2280-2292.
[153] BRADSKI G. The OpenCV Library[J]. Dr. Dobb’s Journal of Software Tools, 2000.
[154] 陈政清. 梁杆结构几何非线性有限元的数值实现方法[J]. 工程力学, 2014(6): 42-52.
[155] 陈政清, 曾庆元, 颜全胜. 空间杆系结构大挠度问题内力分析的 UL 列式法[J]. 土木工程学报, 1992, 25(5): 34-44.
[156] CHEN Z, AGAR T. Geometric nonlinear analysis of flexible spatial beam structures[J]. Computers & structures, 1993, 49(6): 1083-1094.
[157] GUTIERREZ-LEMINI D. Engineering Viscoelasticity[M]. Springer New York, NY, 2013.
[158] MANTI M, HASSAN T, PASSETTI G, et al. A Bioinspired Soft Robotic Gripper for Adaptableand Effective Grasping[J]. Soft Robotics, 2015, 2(3): 107-116.
[159] ZHANG Y, ZHANG W, GAO P, et al. Finger-Palm Synergistic Soft Gripper for DynamicCapture via Energy Harvesting and Dissipation[J]. Nature Communications, 2022, 13(1): 7700.
[160] JRAD H, DION J L, RENAUD F, et al. Non-linear Generalized Maxwell Model for Dynamic Characterization of Viscoelastic Components and Parametric Identification Techniques[C]//International Design Engineering Technical Conferences and Computers and Informationin Engineering Conference: Vol. 45004. American Society of Mechanical Engineers, 2012:291-300.
[161] COX E. A method of assigning numerical and percentage values to the degree of roundness ofsand grains[J]. Journal of paleontology, 1927, 1(3): 179-183.
[162] LIU Z, HOWE R D. Beyond Coulomb: Stochastic Friction Models for Practical Grasping andManipulation[J]. IEEE Robotics and Automation Letters, 2023.
[163] TREMBLAY M R, CUTKOSKY M R. Estimating friction using incipient slip sensing duringa manipulation task[C]//
[1993] Proceedings IEEE International Conference on Robotics andAutomation. IEEE, 1993: 429-434.
[164] SON J S, MONTEVERDE E A, HOWE R D. A tactile sensor for localizing transient eventsin manipulation[C]//Proceedings of the 1994 IEEE International Conference on Robotics andAutomation. IEEE, 1994: 471-476.
[165] SPIERS A J, CALLI B, DOLLAR A M. Variable-friction finger surfaces to enable within-handmanipulation via gripping and sliding[J]. IEEE Robotics and Automation Letters, 2018, 3(4):4116-4123.
[166] TEEPLE C B, AKTAŞ B, YUEN M C, et al. Controlling palm-object interactions via frictionfor enhanced in-hand manipulation[J]. IEEE Robotics and Automation Letters, 2022, 7(2):2258-2265.
[167] LIN Y, CHURCH A, YANG M, et al. Bi-touch: Bimanual tactile manipulation with sim-to-realdeep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2023.
[168] KICKI P, BEDNAREK M, WALAS K. Robotic manipulation of elongated and elastic objects[C]//2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications(SPA). IEEE, 2019: 23-27.
[169] SARKAR N, YUN X, KUMAR V. Dynamic control of 3-D rolling contacts in two-arm manipulation[J]. IEEE Transactions on Robotics and Automation, 1997, 13(3): 364-376.
[170] PINTO L, DAVIDSON J, GUPTA A. Supervision via competition: Robot adversaries for learning tasks[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2017: 1601-1608.

所在学位评定分委会
力学
国内图书分类号
TP242.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/842701
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
刘小博. 基于视觉方法的柔性多面体网络本体感知技术及其机器人操控研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930807-刘小博-机械与能源工程(17404KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘小博]的文章
百度学术
百度学术中相似的文章
[刘小博]的文章
必应学术
必应学术中相似的文章
[刘小博]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。