中文版 | English
题名

柔性视触觉形变重建感知机理及其机器人两栖灵巧操作应用

其他题名
SOFT ROBOTIC PERCEPTION MECHANISM VIA VISION-BASED TACTILE RECONSTRUCTION AND ITS AMPHIBIOUS APPLICATIONS IN DEXTEROUS MANIPULATION
姓名
姓名拼音
GUO Ning
学号
11930729
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
宋超阳
导师单位
机械与能源工程系
论文答辩日期
2024-08-28
论文提交日期
2024-10-09
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,随着机器人技术的迅速发展,如何在复杂环境中实现灵巧操作成为了研究热点之一。特别是在两栖环境中,机器人需要具备高度的感知和适应能力,以应对多变的操作条件。在此背景下,视触觉技术作为一种融合视觉和触觉信息的多模态感知手段,展现出了巨大的潜力。建立视觉观测与柔性接触介质变形之间的关系,实现机器人在两栖环境中基于视触觉信息的灵巧抓取与物品感知是本领域目前研究的主要难题,也是本论文研究的主要内容。

软体机器人在与外界环境进行物理交互时,能够产生连续性的变形。这种软结构本体的变形特征记录了丰富的触觉传感信息,因此,如何在三维空间中重建软体结构的形变成为了解码触觉信息的关键问题。本文基于物理原理建立了一种将超弹性材料变形能与视觉观测点态特征相似度相耦合的多模态感知框架。根据系统总势能最小原理,将平衡稳态下超弹体介质的变形场求解问题转化为视觉观测下的约束优化问题,并提出了对接触介质形变进行实时重建的数值算法。为验证提出的视触觉重建感知机理的有效性,本文对一类具有全向自适应能力的柔性手指进行了硬件结构优化与视触觉算法集成,赋予了被动机器人柔性手指以主动本体形状感知与指面接触力分布感知的能力。仿真与实验结果都表明了提出的传感方法在柔性手指接触形变重建中的实时性(重建时间不超过 50 ms)与准确性(重建误差不大于 2.5 mm)。

单目相机作为本文视触觉传感器的信息源,以视觉图片的形式编码了接触过程中软体机器人手指的变形状态。但是,利用二维图片解码柔性结构的三维变形场,继而获得触觉信息,却极具挑战。本文针对复杂的跨介质视触觉感知任务,提出了一种监督式变分自编码器的学习框架,建立了视觉-力觉的跨模态感知模型。将视觉图像编码的柔性手指形变信息以及力学原理以具有解释性的隐变量特征进行联合编码表征,并利用隐变量特征在视觉与触觉模态间进行转换,得到了通用性更强的视触觉感知机理。在数据集和两栖环境中开展了实验研究,结果表明了提出的跨介质推理模型在视觉-力觉感知中的有效性(预测模型决定系数不小于 0.98)。

视触觉传感信息在机器人灵巧操作方面的应用研究主要包括自适应抓取及环境探索。尽管水下触觉应用需求广泛,但是将视触觉传感技术应用于两栖环境,并研究基于视触觉的机器人两栖灵巧操作却非常稀缺。本文针对柔性手指视触觉感知系统在两栖环境中的抓取性能研究,在水上和水下分别搭建了机器人自适应抓取操作实验平台,验证了提出的感知系统在两栖抓取操作中的适应性和优越性。同时,针对柔性手指视触觉感知系统的环境探索感知性能研究,完成了工业场景中
的二维焊缝追踪实验以及水下打捞场景中的三维物品形状感知实验,验证了提出的感知系统在两栖环境探索任务中的准确性和鲁棒性。

本文提出的柔性视触觉形变重建感知机理为新型视触觉传感器硬件结构及传感算法设计提供了理论指导和设计依据。并且在两栖环境中的机器人灵巧操作应用为视触觉传感技术开辟了新的研究方向和应用领域。
 

其他摘要

In recent years, with the rapid advancement of robotics technology, achieving dexterous manipulation in complex environments has become a focal point of research. Particularly in amphibious environments, robots need to possess high levels of perception and adaptability to cope with varying operational conditions. Against this backdrop, visionbased tactile technology, which integrates visual and tactile information, has shown great potential. This thesis focuses on the perceptual mechanisms of vision-based soft tactile sensing through deformation reconstruction and its application in dexterous manipulation of robots in amphibious environments.

Soft robots can undergo continuous deformation when physically interacting with the external environment. These deformation characteristics of the soft structure body record rich tactile sensory information. Therefore, reconstructing the deformation of the soft structure in three-dimensional space is key to decoding tactile information. This paper establishes a multimodal sensing framework that couples the deformation energy of hyperelastic materials with the similarity of visual observation point features based on physical principles. Following the principle of minimizing total potential energy, the problem of solving the deformation field of hyperelastic medium in equilibrium state is formulated into a constrained optimization problem under visual observation. By constructing finite element spatial discretization and visual observation point constraints, an efficient numerical algorithm is proposed for real-time deformation reconstruction of the soft contact medium. To validate the effectiveness of the proposed perceptual mechanisms, this paper optimizes the hardware structure and integrates the visuotactile algorithm for a class of flexible fingers with omnidirectional adaptive capability, endowing passive robotic flexible fingers with active proprioceptive shape sensing and contact force distribution sensing capabilities. Simulation and experimental results demonstrate the real-time performance (⩽ 50 ms) and accuracy (⩽ 2.5 mm) of the proposed sensing method in reconstructing contact deformations of flexible fingers.

The deformation state of the soft robotic fingers during contact is encoded in the form of visual image. However, it is extremely challenging to decode the three-dimensional deformation field of flexible structures from two-dimensional images to obtain tactile information. For complex cross-medium visual-tactile perception tasks, this paper proposes asupervised variational autoencoder learning framework to establish a visual tactile crossmodal perception model. The deformation information of flexible fingers encoded by visual images and mechanical principles are jointly encoded and represented as interpretable latent variable features. These latent variable features are used to convert between visual and tactile modalities, resulting in a more generalizable visuotactile sensing mechanism. Experimental studies are carried out on datasets and amphibious environments, confirming the effectiveness and accuracy of the cross medium inference model for vision-based tactile perception (R2 ⩾ 0.98).

The application research of visuotactile sensing information in robotic dexterous manipulation mainly includes adaptive grasping and environment exploration. However, applying visuotactile sensing technology in amphibious environments and studying robotic dexterous manipulation based on flexible visuotactile sensing is extremely rare. This paper studies the grasping performance of the flexible finger visuotactile sensing system in amphibious environments, establishing robotic adaptive grasping experimental platforms onland and underwater to verify the adaptability and superiority of the proposed sensing system in amphibious grasping operations. Additionally, for the study of the environment exploration sensing performance of the flexible finger visuotactile sensing system, experiments were completed on two-dimensional weld seam tracking in industrial scenarios and three-dimensional object shape sensing in underwater salvage scenarios, validating the accuracy and robustness of the proposed sensing system in amphibious environment exploration tasks.

The proposed perceptual mechanisms of vision-based soft tactile sensing through deformation reconstruction provides theoretical guidance and design basis for the design of new visuotactile sensor hardware structures and sensing algorithms. The application of robotic dexterous manipulation in amphibious environments opens new research directions and application fields for visuotactile sensing technology.
 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-12
参考文献列表

[1] HADDADIN S, JOHANNSMEIER L, DíAZ LEDEZMA F. Tactile robots as a central embodiment of the tactile internet[J/OL]. Proceedings of the IEEE, 2019, 107(2): 471-487. DOI:10.1109/JPROC.2018.2879870.
[2] ZHANG J, YAO H, MO J, et al. Finger-inspired rigid-soft hybrid tactile sensor with superiorsensitivity at high frequency[J]. Nature communications, 2022, 13(1): 5076.
[3] LASCHI C, MAZZOLAI B, CIANCHETTI M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities[J]. Science robotics, 2016, 1(1): eaah3690.
[4] GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biologicalsampling on deep reefs[J]. Soft robotics, 2016, 3(1): 23-33.
[5] SUBAD R A S I, CROSS L B, PARK K. Soft robotic hands and tactile sensors for underwaterrobotics[J]. Applied Mechanics, 2021, 2(2): 356-382.
[6] SANTINA C D, KATZSCHMANN R K, BICCHI A, et al. Model-based dynamic feedbackcontrol of a planar soft robot: trajectory tracking and interaction with the environment[J/OL].The International Journal of Robotics Research, 2020, 39(4): 490-513. DOI: 10.1177/0278364919897292.
[7] GONG Z, FANG X, CHEN X, et al. A soft manipulator for efficient delicate grasping in shallowwater: Modeling, control, and real-world experiments[J]. The International Journal of RoboticsResearch, 2021, 40(1): 449-469.
[8] RENDA F, BOYER F, DIAS J, et al. Discrete cosserat approach for multisection soft manipulator dynamics[J/OL]. IEEE Transactions on Robotics, 2018, 34(6): 1518-1533. DOI:10.1109/TRO.2018.2868815.
[9] LI H, XUN L, ZHENG G. Piecewise linear strain cosserat model for soft slender manipulator[J/OL]. IEEE Transactions on Robotics, 2023, 39(3): 2342-2359. DOI: 10.1109/TRO.2023.3236942.
[10] FAURE F, DURIEZ C, DELINGETTE H, et al. Sofa: A multi-model framework for interactivephysical simulation[J]. Soft tissue biomechanical modeling for computer assisted surgery, 2012:283-321.
[11] NAVARRO S E, NAGELS S, ALAGI H, et al. A model-based sensor fusion approach for forceand shape estimation in soft robotics[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(4): 5621-5628. DOI: 10.1109/LRA.2020.3008120.
[12] WU K, ZHENG G, ZHANG J. Fem-based trajectory tracking control of a soft trunk robot[J].Robotics and Autonomous Systems, 2022, 150: 103961.
[13] ZHANG Z, BIEZE T M, DEQUIDT J, et al. Visual servoing control of soft robots based onfinite element model[C]//2017 IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS). IEEE, 2017: 2895-2901
[14] FANG G, MATTE C D, SCHARFF R B, et al. Kinematics of soft robots by geometric computing[J]. IEEE Transactions on Robotics, 2020, 36(4): 1272-1286.
[15] DELLA SANTINA C, DURIEZ C, RUS D. Model-based control of soft robots: A survey ofthe state of the art and open challenges[J/OL]. IEEE Control Systems Magazine, 2023, 43(3):30-65. DOI: 10.1109/MCS.2023.3253419.
[16] 刘佳鹏, 王江北, 赵威, 等. 多功能软体机械手的设计与建模[J]. 机械工程学报, 2022, 58(9): 9.
[17] 梅栋, 赵鑫, 唐刚强, 等. 软体机器人建模与控制技术研究进展[J]. 机器人, 2024, 46(2):234.
[18] ZHANG Y, ZHOU X, ZHANG N, et al. Ultrafast piezocapacitive soft pressure sensors with over10 khz bandwidth via bonded microstructured interfaces[J]. Nature Communications, 2024, 15(1): 3048.
[19] SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp usinga scalable tactile glove[J/OL]. Nature, 2019, 569(7758). DOI: 10.1038/s41586-019-1234-z.
[20] YAN Y, HU Z, YANG Z, et al. Soft magnetic skin for super-resolution tactile sensing with forceself-decoupling[J]. Science Robotics, 2021, 6(51): eabc8801.
[21] ZHANG S, CHEN Z, GAO Y, et al. Hardware technology of vision-based tactile sensor: Areview[J/OL]. IEEE Sensors Journal, 2022, 22(22): 21410-21427. DOI: 10.1109/JSEN.2022.3210210.
[22] YAMAGUCHI A, ATKESON C G. Recent progress in tactile sensing and sensors for roboticmanipulation: can we turn tactile sensing into vision?[J]. Advanced Robotics, 2019, 33(14):661-673.
[23] YUAN W, DONG S, ADELSON E H. Gelsight: High-resolution robot tactile sensors for estimating geometry and force[J]. Sensors, 2017, 17(12): 2762.
[24] LIU S Q, ADELSON E H. Gelsight fin ray: Incorporating tactile sensing into a soft compliantrobotic gripper[C/OL]//2022 IEEE 5th International Conference on Soft Robotics (RoboSoft).2022: 925-931. DOI: 10.1109/RoboSoft54090.2022.9762175.
[25] LIU S Q, MA Y, ADELSON E H. Gelsight baby fin ray: A compact, compliant, flexiblefinger with high-resolution tactile sensing[C/OL]//2023 IEEE International Conference on SoftRobotics (RoboSoft). 2023: 1-8. DOI: 10.1109/RoboSoft55895.2023.10122078.
[26] LIU S Q, YAñEZ L Z, ADELSON E H. Gelsight endoflex: A soft endoskeleton hand withcontinuous high-resolution tactile sensing[C/OL]//2023 IEEE International Conference on SoftRobotics (RoboSoft). 2023: 1-6. DOI: 10.1109/RoboSoft55895.2023.10122053.
[27] TIPPUR M H, ADELSON E H. Gelsight360: An omnidirectional camera-based tactile sensor for dexterous robotic manipulation[C/OL]//2023 IEEE International Conference on SoftRobotics (RoboSoft). 2023: 1-8. DOI: 10.1109/RoboSoft55895.2023.10122097.
[28] ZHAO J, ADELSON E H. Gelsight svelte: A human finger-shaped single-camera tactile robotfinger with large sensing coverage and proprioceptive sensing[C/OL]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2023: 8979-8984. DOI:10.1109/IROS55552.2023.10341646.
[29] LAMBETA M, CHOU P W, TIAN S, et al. Digit: A novel design for a low-cost compact highresolution tactile sensor with application to in-hand manipulation[J/OL]. IEEE Robotics andAutomation Letters, 2020, 5(3): 3838-3845. DOI: 10.1109/LRA.2020.2977257.
[30] CUI S, WANG R, HU J, et al. In-hand object localization using a novel high-resolution visuotactile sensor[J/OL]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6015-6025.DOI: 10.1109/TIE.2021.3090697.
[31] ALSPACH A, HASHIMOTO K, KUPPUSWAMY N, et al. Soft-bubble: A highly compliantdense geometry tactile sensor for robot manipulation[C/OL]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). 2019: 597-604. DOI: 10.1109/ROBOSOFT.2019.8722713.
[32] FUNK N, HELMUT E, CHALVATZAKI G, et al. Evetac: An event-based optical tactile sensorfor robotic manipulation[A]. 2023. arXiv: 2312.01236.
[33] KUPPUSWAMY N, ALSPACH A, UTTAMCHANDANI A, et al. Soft-bubble grippers for robust and perceptive manipulation[C/OL]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020: 9917-9924. DOI: 10.1109/IROS45743.2020.9341534.
[34] WARD-CHERRIER B, PESTELL N, CRAMPHORN L, et al. The tactip family: Soft opticaltactile sensors with 3d-printed biomimetic morphologies[J]. Soft robotics, 2018, 5(2): 216-227.
[35] PADMANABHA A, EBERT F, TIAN S, et al. Omnitact: A multi-directional high-resolutiontouch sensor[C/OL]//2020 IEEE International Conference on Robotics and Automation (ICRA).2020: 618-624. DOI: 10.1109/ICRA40945.2020.9196712.
[36] DO W K, KENNEDY M. Densetact: Optical tactile sensor for dense shape reconstruction[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 6188-6194.
[37] SUN H, KUCHENBECKER K J, MARTIUS G. A soft thumb-sized vision-based sensor withaccurate all-round force perception[J]. Nature Machine Intelligence, 2022, 4(2): 135-145.
[38] LEPORA N F. Soft biomimetic optical tactile sensing with the tactip: A review[J]. IEEESensors Journal, 2021, 21(19): 21131-21143.
[39] KAMIYAMA K, KAJIMOTO H, INAMI M, et al. A vision-based tactile sensor[C]//International Conference on Artificial Reality and Telexistence. 2001: 127-134.
[40] GUO F, ZHANG C, YAN Y, et al. Measurement of three-dimensional deformation and loadusing vision-based tactile sensor[C]//2016 IEEE 25th International Symposium on IndustrialElectronics (ISIE). IEEE, 2016: 1252-1257.
[41] YAMAGUCHI A, ATKESON C G. Implementing tactile behaviors using fingervision[C]//2017IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE, 2017:241-248.
[42] MA D, DONLON E, DONG S, et al. Dense tactile force estimation using gelslim and inverse fem[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019:5418-5424.
[43] BAI H, LI S, BARREIROS J, et al. Stretchable distributed fiber-optic sensors[J]. Science, 2020,370(6518): 848-852.
[44] TAPIA J, KNOOP E, MUTNỲ M, et al. Makesense: Automated sensor design for proprioceptive soft robots[J]. Soft robotics, 2020, 7(3): 332-345.
[45] WANG H, ZHANG R, CHEN W, et al. Shape detection algorithm for soft manipulator based onfiber bragg gratings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2977-2982.
[46] XU W, ZHANG H, YUAN H, et al. A compliant adaptive gripper and its intrinsic force sensingmethod[J]. IEEE Transactions on Robotics, 2021, 37(5): 1584-1603.
[47] FARIS O, MUTHUSAMY R, RENDA F, et al. Proprioception and exteroception of a softrobotic finger using neuromorphic vision-based sensing[J]. Soft Robotics, 2023, 10(3): 467-481.
[48] SHE Y, LIU S Q, YU P, et al. Exoskeleton-covered soft finger with vision-based proprioceptionand tactile sensing[C]//2020 ieee international conference on robotics and automation (icra).IEEE, 2020: 10075-10081.
[49] 崔少伟, 王硕, 胡静怡, 等. 面向机器人操作任务的视触觉传感技术综述[J]. 智能科学与技术学报, 2022(004-002).
[50] GOLDFEDER C, ALLEN P K, LACKNER C, et al. Grasp planning via decomposition trees[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE,2007: 4679-4684.
[51] WETTELS N, SANTOS V J, JOHANSSON R S, et al. Biomimetic tactile sensor array[J].Advanced robotics, 2008, 22(8): 829-849.
[52] FACCIO M, BOTTIN M, ROSATI G. Collaborative and traditional robotic assembly: a comparison model[J]. The International Journal of Advanced Manufacturing Technology, 2019,102: 1355-1372.
[53] DE CONINCK E, VERBELEN T, VAN MOLLE P, et al. Learning robots to grasp by demonstration[J]. Robotics and Autonomous Systems, 2020, 127: 103474.
[54] BEKIROGLU Y, HUEBNER K, KRAGIC D. Integrating grasp planning with online stability assessment using tactile sensing[C]//2011 IEEE International Conference on Robotics andAutomation. 2011: 4750-4755.
[55] LYNCH P, CULLINAN M F, MCGINN C. Adaptive grasping of moving objects through tactilesensing[J]. Sensors, 2021, 21(24): 8339.
[56] KOENIG A, LIU Z, JANSON L, et al. Tactile sensing and its role in learning and deployingrobotic grasping controllers[C]//ICRA 2022 Workshop: Reinforcement Learning for ContactRich Manipulation. 2022.
[57] NEWBURY R, GU M, CHUMBLEY L, et al. Deep learning approaches to grasp synthesis: Areview[J]. IEEE Transactions on Robotics, 2023.
[58] BOHG J, MORALES A, ASFOUR T, et al. Data-driven grasp synthesis—a survey[J]. IEEETransactions on robotics, 2013, 30(2): 289-309.
[59] 崔少伟, 魏俊杭, 王睿, 等. 基于视触融合的机器人抓取滑动检测[J]. 华中科技大学学报:自然科学版, 2020, 48(1): 5.
[60] KABOLI M, YAO K, CHENG G. Tactile-based manipulation of deformable objects with dynamic center of mass[C]//2016 IEEE-RAS 16th International Conference on Humanoid Robots(Humanoids). 2016: 752-757.
[61] VEIGA F, PETERS J, HERMANS T. Grip stabilization of novel objects using slip prediction[J]. IEEE Transactions on Haptics, 2018, 11(4): 531-542.
[62] YUAN W, LI R, SRINIVASAN M A, et al. Measurement of shear and slip with a gelsighttactile sensor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA).2015: 304-311.
[63] ZAPATA-IMPATA B S, GIL P, TORRES F. Tactile-driven grasp stability and slip prediction[J].Robotics, 2019, 8(4): 85.
[64] BEKIROGLU Y, SONG D, WANG L, et al. A probabilistic framework for task-orientedgrasp stability assessment[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013: 3040-3047.
[65] GARCIA-GARCIA A, ZAPATA-IMPATA B S, ORTS-ESCOLANO S, et al. Tactilegcn: Agraph convolutional network for predicting grasp stability with tactile sensors[C]//2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1-8.
[66] LI J, DONG S, ADELSON E. Slip detection with combined tactile and visual information[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018:7772-7777.
[67] ZHANG Y, YUAN W, KAN Z, et al. Towards learning to detect and predict contact events onvision-based tactile sensors[C]//Conference on Robot Learning. PMLR, 2020: 1395-1404.
[68] TIAN S, EBERT F, JAYARAMAN D, et al. Manipulation by feel: Touch-based controlwith deep predictive models[C]//2019 International Conference on Robotics and Automation(ICRA). IEEE, 2019: 818-824.
[69] YAMAGUCHI A, ATKESON C G. Tactile behaviors with the vision-based tactile sensor fingervision[J]. International Journal of Humanoid Robotics, 2019, 16(03): 1940002.
[70] ZHANG Y, KAN Z, YANG Y, et al. Effective estimation of contact force and torque for visionbased tactile sensors with helmholtz–hodge decomposition[J]. IEEE Robotics and AutomationLetters, 2019, 4(4): 4094-4101.
[71] MARTINEZ-HERNANDEZ U, DODD T J, EVANS M H, et al. Active sensorimotor controlfor tactile exploration[J/OL]. Robotics and Autonomous Systems, 2017, 87: 15-27. https://www.sciencedirect.com/science/article/pii/S0921889016303086. DOI: https://doi.org/10.1016/j.robot.2016.09.014.
[72] LUO S, BIMBO J, DAHIYA R, et al. Robotic tactile perception of object properties: A review[J]. Mechatronics, 2017, 48: 54-67.
[73] YAN F, WANG D, HE H. Robotic understanding of spatial relationships using neural-logiclearning[C/OL]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). 2020: 8358-8365. DOI: 10.1109/IROS45743.2020.9340917.
[74] VISERAS A, SHUTIN D, MERINO L. Robotic active information gathering for spatial fieldreconstruction with rapidly-exploring random trees and online learning of gaussian processes[J]. Sensors, 2019, 19(5).
[75] AHL A S. The role of vibrissae in behavior: a status review[J]. Veterinary research communications, 1986, 10(1): 245-268.
[76] ADIBI M. Whisker-mediated touch system in rodents: from neuron to behavior[J]. Frontiersin systems neuroscience, 2019, 13: 40.
[77] HUET L A, RUDNICKI J W, HARTMANN M J. Tactile sensing with whiskers of variousshapes: Determining the three-dimensional location of object contact based on mechanical signals at the whisker base[J]. Soft robotics, 2017, 4(2): 88-102.
[78] WANG Z, LO F P W, HUANG Y, et al. Tactile perception: a biomimetic whisker-based methodfor clinical gastrointestinal diseases screening[J]. npj Robotics, 2023, 1(1): 3.
[79] STAROSTIN E, GOSS V, VAN DER HEIJDEN G. Whisker sensing by force and momentmeasurements at the whisker base[J]. Soft Robotics, 2023, 10(2): 326-335.
[80] SAYEGH M A, DARAGHMA H, MEKID S, et al. Review of recent bio-inspired design andmanufacturing of whisker tactile sensors[J]. Sensors, 2022, 22(7): 2705.
[81] XIAO C, XU S, WU W, et al. Active multiobject exploration and recognition via tactile whiskers[J/OL]. IEEE Transactions on Robotics, 2022, 38(6): 3479-3497. DOI: 10.1109/TRO.2022.3182487.
[82] 胡静怡, 崔少伟, 张超凡, 等. 基于触觉感知和伺服的物体三维边缘重建方法[J]. 智能科学与技术学报, 2022(004-002).
[83] JAMALI N, CILIBERTO C, ROSASCO L, et al. Active perception: Building objects’ models using tactile exploration[C]//2016 IEEE-RAS 16th International Conference on HumanoidRobots (Humanoids). IEEE, 2016: 179-185.
[84] SURESH S, SI Z, MANGELSON J G, et al. Shapemap 3-d: Efficient shape mapping throughdense touch and vision[C]//2022 International Conference on Robotics and Automation (ICRA).IEEE, 2022: 7073-7080.
[85] MAO H, XIAO J. Object shape estimation through touch-based continuum manipulation[C]//Robotics Research: The 18th International Symposium ISRR. Springer, 2020: 573-588.
[86] XAVIER M S, FLEMING A J, YONG Y K. Finite element modeling of soft fluidic actuators:Overview and recent developments[J]. Advanced Intelligent Systems, 2021, 3(2): 2000187.
[87] DESHMUKH M, BHOSLE U. A survey of image registration[J]. International Journal ofImage Processing (IJIP), 2011, 5(3): 245.
[88] NGO D T, ÖSTLUND J, FUA P. Template-based monocular 3d shape recovery using laplacianmeshes[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(1): 172-187.
[89] TRETSCHK E, KAIRANDA N, BR M, et al. State of the art in dense monocular non-rigid 3dreconstruction[C]//Computer Graphics Forum: Vol. 42. Wiley Online Library, 2023: 485-520.
[90] SOTIRAS A, DAVATZIKOS C, PARAGIOS N. Deformable medical image registration: Asurvey[J]. IEEE transactions on medical imaging, 2013, 32(7): 1153-1190.
[91] MENGALDO G, RENDA F, BRUNTON S L, et al. A concise guide to modelling the physicsof embodied intelligence in soft robotics[J]. Nature Reviews Physics, 2022, 4(9): 595-610.
[92] JORGE N, STEPHEN J W. Numerical optimization[M]. Spinger, 2006.
[93] WAN F, LIU X, GUO N, et al. Visual learning towards soft robot force control using a 3dmetamaterial with differential stiffness[C]//Conference on Robot Learning. PMLR, 2022: 1269-1278.
[94] HAO J, ZHANG Z, WANG S, et al. 2d shape estimation of a pneumatic-driven soft finger witha large bending angle based on learning from two sensing modalities[J]. Advanced IntelligentSystems, 2023, 5(10): 2200324.
[95] BAAIJ T, HOLKENBORG M K, STÖLZLE M, et al. Learning 3d shape proprioception forcontinuum soft robots with multiple magnetic sensors[J]. Soft Matter, 2023, 19(1): 44-56.
[96] ZHANG Z, HU Y, YU G, et al. DeepTag: A General Framework for Fiducial Marker Designand Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 2931-2944.
[97] MARCHAND E, UCHIYAMA H, SPINDLER F. Pose estimation for augmented reality: ahands-on survey[J]. IEEE transactions on visualization and computer graphics, 2015, 22(12):2633-2651.
[98] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridgeuniversity press, 2003.
[99] GEUZAINE C, REMACLE J F. Gmsh: A 3-d finite element mesh generator with built-in preand post-processing facilities[J]. International journal for numerical methods in engineering,2009, 79(11): 1309-1331.
[100] FABRI A, PION S. Cgal: The computational geometry algorithms library[C]//Proceedings ofthe 17th ACM SIGSPATIAL international conference on advances in geographic informationsystems. 2009: 538-539.
[101] RABINOVICH M, PORANNE R, PANOZZO D, et al. Scalable locally injective mappings[J/OL]. ACM Trans. Graph., 2017, 36(2). DOI: 10.1145/2983621.
[102] ARMIJO L. Minimization of functions having lipschitz continuous first partial derivatives[J].Pacific Journal of mathematics, 1966, 16(1): 1-3.
[103] SHIH B, SHAH D, LI J, et al. Electronic skins and machine learning for intelligent soft robots[J]. Science Robotics, 2020, 5(41): eaaz9239.
[104] LIU F, DESWAL S, CHRISTOU A, et al. Neuro-inspired electronic skin for robots[J]. Sciencerobotics, 2022, 7(67): eabl7344.
[105] BAI N, XUE Y, CHEN S, et al. A robotic sensory system with high spatiotemporal resolutionfor texture recognition[J]. Nature Communications, 2023, 14(1): 7121.
[106] SATO K, KAMIYAMA K, KAWAKAMI N, et al. Finger-shaped gelforce: sensor for measuringsurface traction fields for robotic hand[J]. IEEE Transactions on Haptics, 2009, 3(1): 37-47.
[107] ZHANG G, DU Y, YU H, et al. Deltact: A vision-based tactile sensor using a dense colorpattern[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10778-10785.
[108] BRADSKI G. The OpenCV Library[J]. Dr. Dobb’s Journal of Software Tools, 2000.
[109] BONET J, WOOD R D. Nonlinear continuum mechanics for finite element analysis[M]. 2nded. Cambridge University Press, 2008.
[110] BONNET M, CONSTANTINESCU A. Inverse problems in elasticity[J]. Inverse Problems,2005, 21(2): R1.
[111] XU T, LI M, WANG Z, et al. A method for determining elastic constants and boundary conditions of three-dimensional hyperelastic materials[J]. International Journal of Mechanical Sciences, 2022, 225: 107329.
[112] XU K, DARVE E. Physics constrained learning for data-driven inverse modeling from sparseobservations[J]. Journal of Computational Physics, 2022, 453: 110938.
[113] HUANG D Z, XU K, FARHAT C, et al. Learning constitutive relations from indirect observations using deep neural networks[J]. Journal of Computational Physics, 2020, 416: 109491.
[114] GIVOLI D. A tutorial on the adjoint method for inverse problems[J/OL]. Computer Methodsin Applied Mechanics and Engineering, 2021, 380: 113810. https://www.sciencedirect.com/science/article/pii/S0045782521001468. DOI: https://doi.org/10.1016/j.cma.2021.113810.
[115] LIU J, WANG Z. Non-commutative discretize-then-optimize algorithms for elliptic pdeconstrained optimal control problems[J]. Journal of Computational and Applied Mathematics,2019, 362: 596-613.
[116] MESTDAGH G, COTIN S. An optimal control problem for elastic registration and force estimation in augmented surgery[C]//International Conference on Medical Image Computing andComputer-Assisted Intervention. Springer, 2022: 74-83.
[117] SIN F S, SCHROEDER D, BARBIč J. Vega: Non-linear fem deformable object simulator[J].Computer Graphics Forum, 2013, 32(1): 36-48.
[118] BOLLAPRAGADA R, NOCEDAL J, MUDIGERE D, et al. A progressive batching l-bfgsmethod for machine learning[C]//International Conference on Machine Learning. PMLR, 2018:620-629.
[119] COTIN S, MESTDAGH G, PRIVAT Y. Organ registration from partial surface data in augmented surgery from an optimal control perspective[J/OL]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2024, 480(2281): 20230197. DOI:10.1098/rspa.2023.0197.
[120] HE Y, XIANG S, KANG C, et al. Cross-modal retrieval via deep and bidirectional representationlearning[J/OL]. IEEE Transactions on Multimedia, 2016, 18(7): 1363-1377. DOI: 10.1109/TMM.2016.2558463.
[121] GUO W, WANG J, WANG S. Deep multimodal representation learning: A survey[J/OL]. IEEEAccess, 2019, 7: 63373-63394. DOI: 10.1109/ACCESS.2019.2916887.
[122] GING S, ZOLFAGHARI M, PIRSIAVASH H, et al. Coot: Cooperative hierarchical transformerfor video-text representation learning[C]//LAROCHELLE H, RANZATO M, HADSELL R,et al. Advances in Neural Information Processing Systems: Vol. 33. Curran Associates, Inc.,2020: 22605-22618.
[123] PATRICK M, HUANG P Y, ASANO Y, et al. Support-set bottlenecks for video-text representation learning[C]//International Conference on Learning Representations. 2021.
[124] LIN C C, LIN K, WANG L, et al. Cross-modal representation learning for zero-shot actionrecognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition (CVPR). 2022: 19978-19988.
[125] ANDONIAN A, CHEN S, HAMID R. Robust cross-modal representation learning with progressive self-distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition (CVPR). 2022: 16430-16441.
[126] ZHANG X, ZHANG F, XU C. Explicit cross-modal representation learning for visual commonsense reasoning[J/OL]. IEEE Transactions on Multimedia, 2022, 24: 2986-2997. DOI:10.1109/TMM.2021.3091882.
[127] SATHIAN K, LACEY S. Cross-modal interactions of the tactile system[J/OL]. Current Directions in Psychological Science, 2022, 31(5): 411-418. DOI: 10.1177/09637214221101877.
[128] ZHAO N, JIAO J, XIE W, et al. Cali-nce: Boosting cross-modal video representation learningwith calibrated alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition (CVPR) Workshops. 2023: 6317-6327.
[129] WANG S, ZHU L, SHI L, et al. A survey of full-cycle cross-modal retrieval: From arepresentation learning perspective[J/OL]. Applied Sciences, 2023, 13(7): 4571. DOI:10.3390/app13074571.
[130] LEE J T, BOLLEGALA D, LUO S. “touching to see” and “seeing to feel” : Robotic crossmodal sensory data generation for visual-tactile perception[C/OL]//2019 International Conference on Robotics and Automation (ICRA). 2019: 4276-4282. DOI: 10.1109/ICRA.2019.8793763.
[131] CAI S, ZHU K, BAN Y, et al. Visual-tactile cross-modal data generation using residue-fusiongan with feature-matching and perceptual losses[J/OL]. IEEE Robotics and Automation Letters,2021, 6(4): 7525-7532. DOI: 10.1109/LRA.2021.3095925.
[132] LUO S, LEPORA N F, MARTINEZ-HERNANDEZ U, et al. Vitac: Integrating vision andtouch for multimodal and cross-modal perception[J]. Frontiers in Robotics and AI, 2021, 8:697601.
[133] BISHOP C M, NASRABADI N M. Pattern recognition and machine learning: Vol. 4[M].Springer, 2006.
[134] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. MIT press, 2016.
[135] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J].Advances in neural information processing systems, 2014, 27.
[136] KINGMA D P, WELLING M. Auto-Encoding Variational Bayes[C]//International Conferenceon Learning Representations (ICLR), Banff, AB, Canada, April 14-16. 2014.
[137] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: Anoverview[J]. IEEE signal processing magazine, 2018, 35(1): 53-65.
[138] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using agenerative adversarial network[C]//Proceedings of the IEEE conference on computer vision andpattern recognition. 2017: 4681-4690.
[139] LU Y, WU S, TAI Y W, et al. Image generation from sketch constraint using contextual gan[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 205-220.
[140] FRID-ADAR M, DIAMANT I, KLANG E, et al. Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification[J]. Neurocomputing, 2018,321: 321-331.
[141] ZHANG J, LI K, LAI Y K, et al. Pise: Person image synthesis and editing with decoupled gan[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021: 7982-7990.
[142] CHLAP P, MIN H, VANDENBERG N, et al. A review of medical image data augmentationtechniques for deep learning applications[J]. Journal of Medical Imaging and Radiation Oncology, 2021, 65(5): 545-563.
[143] KINGMA D P, MOHAMED S, REZENDE D J, et al. Semi-supervised learning with deep generative models[C]//Advances in Neural Information Processing Systems (NIPS). 2014: 3581-3589.
[144] REZENDE D J, MOHAMED S, WIERSTRA D. Stochastic backpropagation and approximateinference in deep generative models[C]//International conference on machine learning. PMLR,2014: 1278-1286.
[145] HIGGINS I, MATTHEY L, PAL A, et al. beta-vae: Learning basic visual concepts with aconstrained variational framework[C]//ICLR. 2017.
[146] TAKAHASHI H, IWATA T, YAMANAKA Y, et al. Variational autoencoder with implicit optimal priors[C]//Proceedings of the AAAI Conference on Artificial Intelligence: Vol. 33. 2019:5066-5073.
[147] GUO N, HAN X, LIU X, et al. Autoencoding a soft touch to learn grasping from on-land tounderwater[J]. Advanced Intelligent Systems, 2024, 6(1): 2300382.
[148] TU J, WANG M, LI W, et al. Electronic skins with multimodal sensing and perception[J]. SoftScience, 2023.
[149] LAWRENCE N. Gaussian process latent variable models for visualisation of high dimensionaldata[J]. Advances in neural information processing systems, 2003, 16.
[150] SONI M, DAHIYA R. Soft eskin: distributed touch sensing with harmonized energy and computing[J]. Philosophical Transactions of the Royal Society A, 2020, 378(2164): 20190156.
[151] CHOI S, LEE K, LIM S, et al. Uncertainty-aware learning from demonstration using mixturedensity networks with sampling-free variance modeling[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 6915-6922.
[152] MAKANSI O, ILG E, CICEK O, et al. Overcoming limitations of mixture density networks:A sampling and fitting framework for multimodal future prediction[C]//Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 7144-7153.
[153] ERRICA F, BACCIU D, MICHELI A. Graph mixture density networks[C]//International Conference on Machine Learning. PMLR, 2021: 3025-3035.
[154] AMARI S I. Backpropagation and stochastic gradient descent method[J]. Neurocomputing,1993, 5(4-5): 185-196.
[155] ZINKEVICH M, WEIMER M, LI L, et al. Parallelized stochastic gradient descent[J]. Advancesin neural information processing systems, 2010, 23.
[156] HARDT M, RECHT B, SINGER Y. Train faster, generalize better: Stability of stochasticgradient descent[C]//International conference on machine learning. PMLR, 2016: 1225-1234.
[157] LOUIZOS C, SHALIT U, MOOIJ J M, et al. Causal effect inference with deep latent-variablemodels[J]. Advances in neural information processing systems, 2017, 30.
[158] MATTEI P A, FRELLSEN J. Leveraging the exact likelihood of deep latent variable models[J]. Advances in Neural Information Processing Systems, 2018, 31.
[159] YOUSEF H, BOUKALLEL M, ALTHOEFER K. Tactile sensing for dexterous in-hand manipulation in robotics—a review[J]. Sensors and Actuators A: physical, 2011, 167(2): 171-187.
[160] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J].Science, 2015, 349(6245): 255-260.
[161] KUBO S. Inverse problems related to the mechanics and fracture of solids and structures[J].JSME international journal. Ser. 1, Solid mechanics, strength of materials, 1988, 31(2): 157-166.
[162] HOFMANN B. Regularization for applied inverse and ill-posed problems: a numerical approach: Vol. 85[M]. Springer-Verlag, 2013.
[163] SCARSELLI F, TSOI A C. Universal approximation using feedforward neural networks: Asurvey of some existing methods, and some new results[J]. Neural networks, 1998, 11(1): 15-37.
[164] KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//International Conferenceon Learning Representations(ICLR), San Diego, CA, USA. 2015.
[165] ASPERTI A, TRENTIN M. Balancing reconstruction error and kullback-leibler divergence invariational autoencoders[J]. IEEE Access, 2020, 8: 199440-199448.
[166] ZHU X, DAMARLA S K, HAO K, et al. Parallel interaction spatiotemporal constrained variational autoencoder for soft sensor modeling[J]. IEEE Transactions on Industrial Informatics,2022, 18(8): 5190-5198.
[167] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[168] RYBKIN O, DANIILIDIS K, LEVINE S. Simple and effective vae training with calibrateddecoders[C]//International conference on machine learning. PMLR, 2021: 9179-9189.
[169] ZHANG Y, YANG Q. An overview of multi-task learning[J]. National Science Review, 2018,5(1): 30-43.
[170] ACHILLE A, SOATTO S. Emergence of invariance and disentanglement in deep representations[J]. Journal of Machine Learning Research, 2018, 19(50): 1-34.
[171] TIPPING M E, BISHOP C M. Probabilistic principal component analysis[J]. Journal of theRoyal Statistical Society Series B: Statistical Methodology, 1999, 61(3): 611-622.
[172] HUBER M, RICKERT M, KNOLL A, et al. Human-robot interaction in handing-over tasks[C]//RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human InteractiveCommunication. 2008: 107-112.
[173] CHAN W P, PARKER C A C, VAN DER LOOS H F M, et al. Grip forces and load forces in handovers: Implications for designing human-robot handover controllers[C]//2012 7th ACM/IEEEInternational Conference on Human-Robot Interaction (HRI). 2012: 9-16.
[174] COSTANZO M, DE MARIA G, NATALE C. Handover control for human-robot and robotrobot collaboration[J]. Frontiers in Robotics and AI, 2021, 8: 672995.
[175] LI G, WONG T W, SHIH B, et al. Bioinspired soft robots for deep-sea exploration[J]. NatureCommunications, 2023, 14(1): 7097.
[176] QU J, XU Y, LI Z, et al. Recent advances on underwater soft robots[J]. Advanced IntelligentSystems, 2024, 6(2): 2300299.
[177] CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation: advances and prospects[J]. Pattern recognition, 2001, 34(12): 2259-2281.
[178] LYNCH K M, PARK F C. Modern robotics: Mechanics, planning, and control[M]. CambridgeUniveristy Press, 2017.
[179] FEATHERSTONE R. Rigid body dynamics algorithms[M]. Springer-Verlag, 2007.
[180] DE SCHUTTER J, DE LAET T, RUTGEERTS J, et al. Constraint-based task specificationand estimation for sensor-based robot systems in the presence of geometric uncertainty[J]. TheInternational Journal of Robotics Research, 2007, 26(5): 433-455.
[181] KEEMINK A Q, VAN DER KOOIJ H, STIENEN A H. Admittance control for physical human–robot interaction[J/OL]. The International Journal of Robotics Research, 2018, 37(11): 1421-1444. DOI: 10.1177/0278364918768950.
[182] LEE K K, BUSS M. Force tracking impedance control with variable target stiffness[J]. IFACProceedings Volumes, 2008, 41(2): 6751-6756.
[183] LIU Y, CHEN Y, FANG X. A review of turbidity detection based on computer vision[J/OL].IEEE Access, 2018, 6: 60586-60604. DOI: 10.1109/ACCESS.2018.2875071.
[184] DRAGIEV S, TOUSSAINT M, GIENGER M. Gaussian process implicit surfaces for shape estimation and grasping[C/OL]//2011 IEEE International Conference on Robotics and Automation.2011: 2845-2850. DOI: 10.1109/ICRA.2011.5980395.
[185] RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. TheMIT Press, 2005.
[186] THAYANANTHAN A, STENGER B, TORR P, et al. Shape context and chamfer matchingin cluttered scenes[C/OL]//2003 IEEE Computer Society Conference on Computer Vision andPattern Recognition, 2003. Proceedings.: Vol. 1. 2003: I-I. DOI: 10.1109/CVPR.2003.1211346.

所在学位评定分委会
力学
国内图书分类号
TP242.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/842702
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
郭宁. 柔性视触觉形变重建感知机理及其机器人两栖灵巧操作应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930729-郭宁-机械与能源工程系(62771KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭宁]的文章
百度学术
百度学术中相似的文章
[郭宁]的文章
必应学术
必应学术中相似的文章
[郭宁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。