[
[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang. “The Roadmap to 6G: AI Empowered Wireless Networks”. In: IEEE Commun. Mag. 57.8 (Aug. 2019), pp. 84–90.
[2] X. Yuan, Y.-J. A. Zhang, Y. Shi, W. Yan, and H. Liu. “Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities”. In: IEEE Wireless Commun. 28.2 (Apr. 2021), pp. 136–143.
[3] Q. Wu and R. Zhang. “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming”. In: IEEE Trans. Wireless Commun. 18.11 (Nov. 2019), pp. 5394–5409.
[4] X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson. “RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials”. In: IEEE Trans. Commun. 69.12 (Dec. 2021), pp. 8627–8640.
[5] T. Jiang and W. Yu. “Interference Nulling Using Reconfigurable Intelligent Surface”. In: IEEE J. Sel. Areas Commun. 40.5 (May 2022), pp. 1392–1406.
[6] Q. Wu and R. Zhang. “Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network”. In: IEEE Commun. Mag. 58.1 (Jan. 2020), pp. 106–112.
[7] Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo. “STAR: Simultaneous Transmission and Reflection for 360° Coverage by Intelligent Surfaces”. In: IEEE Wireless Commun. 28.6 (Dec. 2021), pp. 102–109.
[8] S. Zhang, H. Zhang, B. Di, Y. Tan, M. Di Renzo, Z. Han, H. V. Poor, and L. Song. “Intelligent Omni-Surfaces: Ubiquitous Wireless Transmission by Reflective-Refractive Metasurfaces”. In: IEEE Trans. Wireless Commun. 21.1 (Jan. 2022), pp. 219–233.
[9] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.
[10] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He. “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel”. In: IEEE Trans. Signal Process. 59.9 (Sept. 2011), pp. 4331–4340.
[11] S. Sesia, I. Toufik, and M. Baker. LTE-The UMTS Long Term Evolution: From Theory to Practice. Hoboken, NJ, USA: Wiley, 2011.
[12] L. Liang, H. Ye, G. Yu, and G. Y. Li. “Deep-Learning-Based Wireless Resource Allocation With Application to Vehicular Networks”. In: Proc. IEEE 108.2 (Feb. 2020), pp. 341–356.
[13] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos. “Learning to Optimize: Training Deep Neural Networks for Interference Management”. In: IEEE Trans. Signal Process. 66.20 (Oct. 2018), pp. 5438–5453.
[14] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain. “Machine Learning for Resource Management in Cellular and IoT Networks: Potentials, Current Solutions, and Open Challenges”. In: IEEE Commun. Surveys Tuts. 22.2 (2nd Quart. 2020), pp. 1251–1275.
[15] W. Lee, O. Jo, and M. Kim. “Intelligent Resource Allocation in Wireless Communications Systems”. In: IEEE Commun. Mag. 58.1 (Jan. 2020), pp. 100–105.
[16] Y. Wang, Y. Li, Q. Shi, and Y.-C. Wu. “ENGNN: A General Edge-Update Empowered GNN Architecture for Radio Resource Management in Wireless Networks”. In: IEEE Trans. Wireless Commun. 23.6 (June 2024), pp. 5330–5344. issn: 1558-2248.
[17] A. Careem, M. Ahamed, and A. Dutta. “Real-time Prediction of Non-stationary Wireless Channels”. In: IEEE Trans. Wireless Commun. 19.12 (Dec. 2020), 7836–7850.
[18] X. Cheng, Z. Huang, and L. Bai. “Channel Nonstationarity and Consistency for Beyond 5G and 6G: A Survey”. In: IEEE Commun. Surveys Tuts. 24.3 (3rd Quart. 2022), pp. 1634–1669.
[19] H. Sun, W. Pu, X. Fu, T.-H. Chang, and M. Hong. “Learning to Continuously Optimize Wireless Resource in a Dynamic Environment: A Bilevel Optimization Perspective”. In: IEEE Trans. Signal Process. 70 (2022), pp. 1900–1917.
[20] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. “A Survey on Mobile Edge Computing: The Communication Perspective”. In: IEEE Commun. Surveys Tuts. 19.4 (4th Quart. 2017), pp. 2322–2358.
[21] Y. Qi, Y. Zhou, Y.-F. Liu, L. Liu, and Z. Pan. “Traffic-Aware Task Offloading Based on Convergence of Communication and Sensing in Vehicular Edge Computing”. In: IEEE Internet Things J. 8.24 (Dec. 2021), pp. 17762–17777.
[22] Y. Peng, X. Tang, Y. Zhou, J. Li, Y. Qi, L. Liu, and H. Lin. “Computing and Communication Cost-Aware Service Migration Enabled by Transfer Reinforcement Learning for Dynamic Vehicular Edge Computing Networks”. In: IEEE Trans. Mob. Comput. 23.1 (Jan. 2024), pp. 257–269.
[23] X. Hu, C. Masouros, and K.-K. Wong. “Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-Based to Location-Only Learning-Based Solutions”. In: IEEE Trans. Commun. 69.6 (June 2021), pp. 3709–3725.
[24] F. Zhou and R. Q. Hu. “Computation Efficiency Maximization in Wireless-Powered Mobile Edge Computing Networks”. In: IEEE Trans. Wireless Commun. 19.5 (May 2020), pp. 3170–3184.
[25] H. Chen, D. Zhao, Q. Chen, and R. Chai. “Joint Computation Offloading and Radio Resource Allocations in Small-Cell Wireless Cellular Networks”. In: IEEE Trans. Green Commun. Netw. 4.3 (Sept. 2020), pp. 745–758.
[26] Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, and W. Hao. “Intelligent Reflecting Surface Assisted Mobile Edge Computing for Internet of Things”. In: IEEE Wireless Commun. Lett. 10.3 (Mar. 2021), pp. 619–623.
[27] H. Xie, M. Xia, P. Wu, S. Wang, and H. V. Poor. “Edge Learning for Large-Scale Internet of Things With Task-Oriented Efficient Communication”. In: IEEE Trans. Wireless Commun. 22.12 (Dec. 2023), pp. 9517–9532.
[28] B. L. Ng, J. S. Evans, S. V. Hanly, and D. Aktas. “Distributed Downlink Beamforming With Cooperative Base Stations”. In: IEEE Trans. Inf. Theory 54.12 (Dec. 2008), pp. 5491–5499.
[29] L. Liu, Y. Zhou, W. Zhuang, J. Yuan, and L. Tian. “Tractable Coverage Analysis for Hexagonal Macrocell-Based Heterogeneous UDNs With Adaptive Interference-Aware CoMP”. In: IEEE Trans. Wireless Commun. 18.1 (Jan. 2019), pp. 503–517.
[30] L. Liu, Y. Zhou, V. Garcia, L. Tian, and J. Shi. “Load Aware Joint CoMP Clustering and Inter-Cell Resource Scheduling in Heterogeneous Ultra Dense Cellular Networks”. In: IEEE Trans. Veh. Technol. 67.3 (Mar. 2018), pp. 2741–2755.
[31] Q. Cai, Y. Zhou, L. Liu, Y. Qi, Z. Pan, and H. Zhang. “Collaboration of Heterogeneous Edge Computing Paradigms: How to Fill the Gap between Theory and Practice”. In: IEEE Wireless Commun. 31.1 (Feb. 2024), pp. 110–117.
[32] J. T. Chapman, J. Andreoli-Fang, M. Chauvin, E. C. Reyes, Z. Lu, D. Liu, J. Padden, and A. Bernstein. “Low latency techniques for mobile backhaul over DOCSIS”. In: Proc. IEEE Wireless Commun. Netw. Conf. 2018.
[33] L. Su, C. Yang, and S. Han. “The Value of Channel Prediction in CoMP Systems with Large Backhaul Latency”. In: IEEE Trans. Commun. 61.11 (Nov. 2013), pp. 4577–4590.
[34] K. Raaen and I. Kjellmo. “Measuring Latency in Virtual Reality Systems”. In: Proc. Int. Conf. Entertainment Comput. 2015, pp. 457–462.
[35] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li. “Mobile-Edge Computing: Partial Computation Offloading Using Dynamic Voltage Scaling”. In: IEEE Trans. Commun. 64.10 (Oct. 2016), pp. 4268–4282.
[36] Z. Chu, P. Xiao, M. Shojafar, D. Mi, W. Hao, J. Shi, and F. Zhou. “Utility Maximization for IRS Assisted Wireless Powered Mobile Edge Computing and Caching (WP-MECC) Networks”. In: IEEE Trans. Commun. 71.1 (Jan. 2023), pp. 457–472.
[37] K. Li, M. Tao, and Z. Chen. “Exploiting Computation Replication for Mobile Edge Computing: A Fundamental Computation-Communication Tradeoff Study”. In: IEEE Trans. Wireless Commun. 19.7 (July 2020), pp. 4563–4578.
[38] Q.-U.-A. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini. “Intelligent Reflecting Surface-Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design”. In: IEEE Open J. Commun. Soc. 1 (May 2020), pp. 661–680.
[39] S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen. “Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization”. In: IEEE Trans. Commun. 68.9 (Sept. 2020), pp. 5849–5863.
[40] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu. “Energy-Optimal Mobile Cloud Computing under Stochastic Wireless Channel”. In: IEEE Trans. Wireless Commun. 12.9 (Sept. 2013), pp. 4569–4581.
[41] S. Bi and Y. J. Zhang. “Computation Rate Maximization for Wireless Powered Mobile-Edge Computing With Binary Computation Offloading”. In: IEEE Trans. Wireless Commun. 17.6 (June 2018), pp. 4177–4190.
[42] Y. Ye, L. Shi, X. Chu, R. Q. Hu, and G. Lu. “Resource Allocation in Backscatter-Assisted Wireless Powered MEC Networks With Limited MEC Computation Capacity”. In: IEEE Trans. Wireless Commun. 21.12 (Dec. 2022), pp. 10678–10694.
[43] X. Yang, S. Hua, Y. Shi, H. Wang, J. Zhang, and K. B. Letaief. “Sparse optimization for green edge AI inference”. In: J. Commun. Inf. Netw. 5.1 (Mar. 2020), pp. 1–15.
[44] L. Lovasz. “Randomized Algorithms in Combinatorial Optimization”. In: Comb. Optim., vol. 20, DIMACS Ser. Discrete Math. Theor. Comput. Sci. 20 (1995), pp. 153–179.
[45] F. Neumann. “Combinatorial Optimization and the Analysis of Randomized Search Heuristics”. PhD thesis. Christian-Albrechts Universität Kiel, 2006.
[46] E. Visotsky and U. Madhow. “Optimum Beamforming Using Transmit Antenna Arrays”. In: Proc. IEEE Veh. Technol. Conf. May 1999.
[47] L. Du, S. Shao, G. Yang, J. Ma, Q. Liang, and Y. Tang. “Capacity Characterization for Reconfigurable Intelligent Surfaces Assisted Multiple-Antenna Multicast”. In: IEEE Trans. Wireless Commun. 20.10 (Oct. 2021), pp. 6940–6953.
[48] Z. Liu, Z. Li, M. Wen, Y. Gong, and Y.-C. Wu. “STAR-RIS-Aided Mobile Edge Computing: Computation Rate Maximization With Binary Amplitude Coefficients”. In: IEEE Trans. Commun. 71.7 (July 2023), pp. 4313–4327.
[49] A. Andresen and V. Spokoiny. “Convergence of an Alternating Maximization Procedure”. In: The J. Mach. Learn. Res. 17.1 (Apr. 2016), pp. 2229–2281.
[50] E. Björnson, M. Bengtsson, and B. Ottersten. “Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure [Lecture Notes]”. In: IEEE Signal Process. Mag. 31.4 (July 2014), pp. 142–148.
[51] S. Akila. “l0 Sparse Signal Processing and Model Selection with Applications”. PhD thesis. UNSW Sydney, 2012.
[52] I. Pólik and T. Terlaky. Interior Point Methods for Nonlinear Optimization. Berlin, Germany: Springer, 2010.
[53] R. Gribonval and M. Nielsen. “Sparse Representations in Unions of Bases”. In: IEEE Trans. Inf. Theory 49.12 (Dec. 2003), pp. 3320–3325.
[54] Z. Li, S. Wang, Q. Lin, Y. Li, M. Wen, Y.-C. Wu, and H. V. Poor. “Phase Shift Design in RIS Empowered Wireless Networks: From Optimization to AI-Based Methods”. In: Network 2.3 (2022), pp. 398–418.
[55] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen. “Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication”. In: IEEE Trans. Wireless Commun. 18.8 (Nov. 2019), pp. 4157–4170.
[56] Y. Chen, M. Wen, E. Basar, Y.-C. Wu, L. Wang, and W. Liu. “Exploiting Reconfigurable Intelligent Surfaces in Edge Caching: Joint Hybrid Beamforming and Content Placement Optimization”. In: IEEE Trans. Wireless Commun. 20.12 (Dec. 2021), pp. 7799–7812.
[57] M. T. Heath. Scientific Computing: An Introductory Survey, Revised Second Edition. Philadelphia, PA, USA: SIAM, 2018.
[58] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[59] Y. Li, M. Xia, and Y.-C. Wu. “First-Order Algorithm for Content-Centric Sparse Multicast Beamforming in Large-Scale C-RAN”. In: IEEE Trans. Wireless Commun. 17.9 (Sept. 2018), pp. 5959–5974.
[60] T. Lipp and S. Boyd. “Variations and Extension of the Convex-Concave Procedure”. In: Optim. Eng. 17.2 (2016), pp. 263–287.
[61] K.-G. Nguyen, Q.-D. Vu, L.-N. Tran, and M. Juntti. “Energy Efficiency Fairness for Multi-Pair Wireless-Powered Relaying Systems”. In: IEEE J. Sel. Areas Commun. 37.2 (Feb. 2019), pp. 357–373.
[62] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang. “Semidefinite Relaxation of Quadratic Optimization Problems”. In: IEEE Signal Process. Mag. 27.3 (May 2010), pp. 20–34.
[63] Q. Wu and R. Zhang. “Weighted Sum Power Maximization for Intelligent Reflecting Surface Aided SWIPT”. In: IEEE Wireless Commun. Lett. 9.5 (May 2020), pp. 586–590.
[64] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo. “Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing”. In: IEEE J. Sel. Areas Commun. 38.11 (Nov. 2020), pp. 2666–2682.
[65] R. Pinto Antonioli, I. M. Braga, G. Fodor, Y. C. B. Silva, A. L. F. de Almeida, and W. C. Freitas. “On the Energy Efficiency of Cell-Free Systems With Limited Fronthauls: Is Coherent Transmission Always the Best Alternative?” In: IEEE Trans. Wireless Commun. 21.10 (Oct. 2022), pp. 8729–8743.
[66] H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson. “On the Total Energy Efficiency of Cell-Free Massive MIMO”. In: IEEE Trans. Green Commun. Netw. 2.1 (Mar. 2018), pp. 25–39.
[67] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. “A View of Cloud Computing”. In: Commun. ACM 53.4 (2010), pp. 50–58.
[68] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”. In: IEEE Commun. Surveys Tuts. 17.4 (4th Quart. 2015), pp. 2347–2376.
[69] X. Hu, K.-K. Wong, and K. Yang. “Wireless Powered Cooperation-Assisted Mobile Edge Computing”. In: IEEE Trans. Commun. 17.4 (Apr. 2018), pp. 2375–2388.
[70] C. You, K. Huang, H. Chae, and B.-H. Kim. “Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading”. In: IEEE Trans. Wireless Commun. 16.3 (Mar. 2017), pp. 1397–1411.
[71] Z. Li, S. Wang, M. Wen, and Y.-C. Wu. “Secure Multicast Energy-Efficiency Maximization With Massive RISs and Uncertain CSI: First-Order Algorithms and Convergence Analysis”. In: IEEE Trans. Wireless Commun. 21.9 (Sept. 2022), pp. 6818–6833.
[72] Y. Yang, Y. Gong, and Y.-C. Wu. “Intelligent-Reflecting-Surface-Aided Mobile Edge Computing With Binary Offloading: Energy Minimization for IoT Devices”. In: IEEE Internet Things J. 9.15 (Aug. 2022), pp. 12973–12983.
[73] J. Xu, Y. Liu, X. Mu, and O. A. Dobre. “STAR-RISs: Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces”. In: IEEE Commun. Lett. 25.9 (Sept. 2021), pp. 3134–3138.
[74] B. O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng. “Dynamic Control of Electromagnetic Wave Propagation with the Equivalent Principle Inspired Tunable Metasurface”. In: Sci. Rep. 4.1 (2014), pp. 1–7.
[75] H. Zhang, S. Zeng, B. Di, Y. Tan, M. Di Renzo, M. Debbah, Z. Han, H. V. Poor, and L. Song. “Intelligent Omni-Surfaces for Full-Dimensional Wireless Communications: Principles, Technology, and Implementation”. In: IEEE Commun. Mag. 60.2 (Feb. 2022), pp. 39–45.
[76] S. Zeng, H. Zhang, B. Di, Y. Liu, M. D. Renzo, Z. Han, H. V. Poor, and L. Song. “Intelligent Omni-Surfaces: Reflection-Refraction Circuit Model, Full-Dimensional Beamforming, and System Implementation”. In: IEEE Trans. Wireless Commun. 70.11 (Nov. 2022), pp. 7711–7727.
[77] B. Wu and B. Ghanem. “lp-Box ADMM: A Versatile Framework for Integer Programming”. In: IEEE Trans. Pattern Anal. Mach. Intell. 41.7 (July 2019), pp. 1695–1708.
[78] W. Murray and K.-M. Ng. “An Algorithm for Nonlinear Optimization Problems with Binary Variables”. In: Comput. Optim. Appl. 47.2 (2010), pp. 257–288.
[79] M. Borchardt. “An Exact Penalty Approach for Solving a Class of Minimization Problems with Boolean Variables”. In: Optim. 19.6 (1988), pp. 829–838.
[80] X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober. “Simultaneously Transmitting and Reflecting (STAR) RIS Aided Wireless Communications”. In: IEEE Trans. Wireless Commun. 21.5 (May 2022), pp. 3083–3098.
[81] T. Zhang, S. Wang, Y. Zhuang, C. You, M. Wen, and Y.-C. Wu. “Reconfigurable Intelligent Surface Assisted OFDM Relaying: Subcarrier Matching With Balanced SNR”. In: IEEE Trans. on Veh. Tech. 72.2 (Feb. 2023), pp. 2216–2230.
[82] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer Science & Business Media, 2013.
[83] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM, 1990.
[84] D. P. Bertsekas. “Nonlinear Programming”. In: J. Oper. Res. Soc. 48.3 (1997), pp. 334–334.
[85] W. Murray and K.-M. Ng. “Algorithms for Global Optimization and Discrete Problems Based on Methods for Local Optimization”. In: Handbook of Global Optimization. Springer, 2002, pp. 87–113.
[86] K. Shen and W. Yu. “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming”. In: IEEE Trans. Signal Process. 66.10 (May 2018), pp. 2616–2630.
[87] K. Shen and W. Yu. “Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching”. In: IEEE Trans. Signal Process. 66.10 (May 2018), pp. 2631–2644.
[88] Y. Ma, Y. Shen, X. Yu, J. Zhang, S. Song, and K. B. Letaief. “A Low-Complexity Algorithmic Framework for Large-Scale IRS-Assisted Wireless Systems”. In: Proc. IEEE Glob. Commun. Conf. Workshops. 2020.
[89] M. Razaviyayn, M. Hong, and Z.-Q. Luo. “A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization”. In: SIAM J. Optim. 23.2 (2013), p. 1126.
[90] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson. “Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks”. In: IEEE Trans. Wireless Commun. 19.5 (May 2020), pp. 3064–3076.
[91] S. Zhang and R. Zhang. “Capacity Characterization for Intelligent Reflecting Surface Aided MIMO Communication”. In: IEEE J. Sel. Areas Commun. 38.8 (Aug. 2020), pp. 1823–1838.
[92] S. Hua, Y. Zhou, K. Yang, Y. Shi, and K. Wang. “Reconfigurable Intelligent Surface for Green Edge Inference”. In: IEEE Trans. Green Commun. Netw. 5.2 (2021), pp. 964–979.
[93] Q. Wu and R. Zhang. “Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts”. In: IEEE Trans. Commun. 68.3 (Mar. 2020), pp. 1838–1851.
[94] Q. Wu and R. Zhang. “Joint Active and Passive Beamforming Optimization for Intelligent Reflecting Surface Assisted SWIPT Under QoS Constraints”. In: IEEE J. Sel. Areas Commun. 38.8 (Aug. 2020), pp. 1735–1748.
[95] H. V. Cheng and W. Yu. “Degree-of-Freedom of Modulating Information in the Phases of Reconfigurable Intelligent Surface”. In: IEEE Trans. Inf. Theory 70.1 (Jan. 2024), pp. 170–188.
[96] Y. Li, S. Zhang, X. Ren, J. Zhu, J. Huang, P. He, K. Shen, Z. Yao, J. Gong, T.-H. Chang, Q. Shi, and Z.-Q. Luo. “Real-World Wireless Network Modeling and Optimization: From Model/Data-Driven Perspective”. In: Chinese J. Electron. 31.6 (Nov. 2022), pp. 991–1012.
[97] J. Zhang, W. Xia, M. You, G. Zheng, S. Lambotharan, and K.-K. Wong. “Deep Learning Enabled Optimization of Downlink Beamforming Under Per-Antenna Power Constraints: Algorithms and Experimental Demonstration”. In: IEEE Trans. Wireless Commun. 19.6 (June 2020), pp. 3738–3752.
[98] J. Guo and C. Yang. “Learning Power Allocation for Multi-Cell-Multi-User Systems with Heterogeneous Graph Neural Networks”. In: IEEE Trans. Wireless Commun. 21.2 (Feb. 2022), pp. 884–897.
[99] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief. “Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis”. In: IEEE J. Sel. Areas Commun. 39.1 (Jan. 2021), pp. 101–115.
[100] J. Guo, C.-K. Wen, and S. Jin. “Deep Learning-Based CSI Feedback for Beamforming in Single- and Multi-Cell Massive MIMO Systems”. In: IEEE J. Sel. Areas Commun. 39.7 (July 2021), pp. 1872–1884.
[101] J. M. J. Huttunen, D. Korpi, and M. Honkala. “DeepTx: Deep Learning Beamforming With Channel Prediction”. In: IEEE Trans. Wireless Commun. 22.3 (Mar. 2023), pp. 1855–1867.
[102] X. He, L. Huang, J. Wang, and Y. Gong. “Learn to Optimize RIS Aided Hybrid Beamforming with Out-of-Distribution Generalization”. In: IEEE Trans. Veh. Technol. (early access, Mar. 2024).
[103] T. Van Luong, N. Shlezinger, C. Xu, T. M. Hoang, Y. C. Eldar, and L. Hanzo. “Deep Learning Based Successive Interference Cancellation for the Non-Orthogonal Downlink”. In: IEEE Trans. Veh. Technol. 71.11 (Nov. 2022), pp. 11876–11888.
[104] Z. Liu, Y. Zeng, W. Zhang, and Y. Gong. “Trajectory Design for UAV Communications with No-Fly Zones by Deep Reinforcement Learning”. In: Proc. IEEE Int. Conf. Commun. 2021.
[105] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief. “LORM: Learning to Optimize for Resource Management in Wireless Networks with Few Training Samples”. In: IEEE Trans. Wireless Commun. 19.1 (Jan. 2020), pp. 665–679.
[106] Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and Z.-Q. Luo. “Transfer Learning and Meta Learning-Based Fast Downlink Beamforming Adaptation”. In: IEEE Trans. Wireless Commun. 20.3 (Mar. 2021), pp. 1742–1755.
[107] I. Nikoloska and O. Simeone. “Modular Meta-Learning for Power Control via Random Edge Graph Neural Networks”. In: IEEE Trans. Wireless Commun. 22.1 (Jan. 2023), pp. 457–470.
[108] H. Zhou, W. Xia, H. Zhao, J. Zhang, Y. Ni, and H. Zhu. “Continual Learning-Based Fast Beamforming Adaptation in Downlink MISO Systems”. In: IEEE Wireless Commun. Lett. 12.1 (Jan. 2023), pp. 36–39.
[109] M. Akrout, A. Feriani, F. Bellili, A. Mezghani, and E. Hossain. “Continual Learning-Based MIMO Channel Estimation: A Benchmarking Study”. In: Proc. IEEE Int. Conf. Commun. 2023.
[110] Q. Hou, M. Lee, G. Yu, and Y. Cai. “Meta-Gating Framework for Fast and Continuous Resource Optimization in Dynamic Wireless Environments”. In: IEEE Trans. Commun. 71.9 (Sept. 2023), pp. 5259–5273.
[111] R. M. French. “Catastrophic Forgetting in Connectionist Networks”. In: Trends Cogn. Sci. 3.4 (1999), pp. 128–135.
[112] R. Ratcliff. “Connectionist Models of Recognition Memory: Constraints Imposed by Learning and Forgetting Functions.” In: Psychol. Rev. 97.2 (1990), pp. 285–308.
[113] Y. Shi, L. Lian, Y. Shi, Z. Wang, Y. Zhou, L. Fu, L. Bai, J. Zhang, and W. Zhang. “Machine Learning for Large-Scale Optimization in 6G Wireless Networks”. In: IEEE Commun. Surveys Tuts. 25.4 (4th Quart. 2023), pp. 2088–2132.
[114] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. “Modeling Time-Variant User Mobility in Wireless Mobile Networks”. In: Proc. IEEE Int. Conf. Comput. Commun. 2007.
[115] J. Rodríguez-Piñeiro, Z. Huang, X. Cai, T. Domínguez-Bolaño, and X. Yin. “Geometry-Based MPC Tracking and Modeling Algorithm for Time-Varying UAV Channels”. In: IEEE Trans. Wireless Commun. 20.4 (Apr. 2021), pp. 2700–2715.
[116] C. F. López and C.-X. Wang. “Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels”. In: IEEE Trans. Wireless Commun. 17.5 (May 2018), pp. 2893–2905.
[117] Z. Lian, L. Jiang, C. He, and D. He. “A Non-Stationary 3-D Wideband GBSM for HAP-MIMO Communication Systems”. In: IEEE Trans. Veh. Technol. 68.2 (Feb. 2019), pp. 1128–1139.
[118] Z. Li and D. Hoiem. “Learning without Forgetting”. In: IEEE Trans. Pattern Anal. Mach. Intell. 40.12 (Dec. 2018), pp. 2935–2947.
[119] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. “Efficient Lifelong Learning with A-GEM”. In: Proc. Int. Conf. Learn. Represent. 2019.
[120] S. Wang, X. Li, J. Sun, and Z. Xu. “Training Networks in Null Space of Feature Covariance for Continual Learning”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2021.
[121] G. Saha, I. Garg, and K. Roy. “Gradient Projection Memory for Continual Learning”. In: Proc. Int. Conf. Learn. Represent. 2021.
[122] Y. Kong, L. Liu, Z. Wang, and D. Tao. “Balancing Stability and Plasticity Through Advanced Null Space in Continual Learning”. In: Proc. Eur. Conf. Comput. Vis. 2022.
[123] Z. Liu, Y. Li, Y. Gong, and Y.-C. Wu. “Learning a Low-Rank Feature Representation: Achieving Better Trade-Off between Stability and Plasticity in Continual Learning”. In: Proc. Int. Conf. Acoust., Speech, Signal Process. 2024.
[124] A. Abbasi, P. Nooralinejad, V. Braverman, H. Pirsiavash, and S. Kolouri. “Sparsity and Heterogeneous Dropout for Continual Learning in the Null Space of Neural Activations”. In: Proc. Conf. Lifelong Learn. Agents. 2022.
[125] D. Callan. “When is “Rank” Additive?” In: The College Math. J. 29.2 (Mar. 1998), pp. 145–147.
[126] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. “Rethinking the Value of Network Pruning”. In: Proc. Int. Conf. Learn. Represent. 2019.
[127] J. Frankle and M. Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks”. In: Proc. Int. Conf. Learn. Represent. 2019.
[128] M. Lin, Q. Chen, and S. Yan. “Network In Network”. In: Proc. Int. Conf. Learn. Represent. 2013.
[129] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. “Learning Structured Sparsity in Deep Neural Networks”. In: Proc. Adv. Neural Inf. Process. Systs. 2016.
[130] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2016.
[131] Y. Li, Z. Chen, Y. Wang, C. Yang, B. Ai, and Y.-C. Wu. “Heterogeneous Transformer: A Scale Adaptable Neural Network Architecture for Device Activity Detection”. In: IEEE Trans. Wireless Commun. 22.5 (May 2023), pp. 3432–3446.
[132] Y. Li and Y.-F. Liu. “HPE Transformer: Learning to Optimize Multi-Group Multicast Beamforming Under Nonconvex QoS Constraints”. In: IEEE Trans. Commun. (early access, Apr. 2024).
[133] D. Lopez-Paz and M. Ranzato. “Gradient Episodic Memory for Continual Learning”. In: Proc. Adv. Neural Inf. Process. Systs. 2017.
[134] A. Alkhateeb. “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications”. In: Proc. Inf. Theory Appl. Workshop. Feb. 2019.
修改评论