中文版 | English
题名

Ultra-fast and accurate force spectrum prediction and inverse design of light-driven microstructure by deep learning

作者
通讯作者Li, Xiao
发表日期
2024-09-23
DOI
发表期刊
ISSN
1094-4087
卷号32期号:20
摘要
Light can mechanically manipulate micro-/nano-particles. Recently, there has been an increasing interest in designing particles that experience controlled optical forces by tailoring light scattering. However, the huge parameter space makes traditional computational approaches impractical. Here, using data calculated from the state-of-the-art Mie scattering-Maxwell stress tensor method, deep neural networks (DNNs) are trained to study the optical forces acting on microstructures composed of a 5 x 5 square grid where each site is either empty or occupied by a dielectric sphere. Different structure configurations can tailor light scattering and forces. This paper aims to obtain a configuration that experiences different predefined forces when illuminated by light of different frequencies. The design targets are imprinted in a pseudo-optical force spectrum using a generative network. Then, by integrating all the proposed DNNs, inverse design is performed, where from a given pseudo-optical force spectrum, a microstructure satisfying the design targets is obtained. Compared to traditional approaches, the DNNs approach is several orders of magnitude faster while maintaining a high accuracy. Furthermore, for designing microstructures, this circumvents the need for iterative optimization. This approach paves the way for efficiently developing light-driven machines such as nano-drones or nano-vehicles, where tailored multiple-frequency responses are required.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[12074169] ; Guangdong Province Talent Recruitment Program[2021QN02C103] ; Research Grants Council of Hong Kong[AoE/P-502/20]
WOS研究方向
Optics
WOS类目
Optics
WOS记录号
WOS:001326967700005
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/842823
专题理学院_物理系
作者单位
1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China
2.Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
第一作者单位物理系
通讯作者单位物理系
第一作者的第一单位物理系
推荐引用方式
GB/T 7714
Wang, Ongyong,Li, Xiao,Ng, Jack. Ultra-fast and accurate force spectrum prediction and inverse design of light-driven microstructure by deep learning[J]. OPTICS EXPRESS,2024,32(20).
APA
Wang, Ongyong,Li, Xiao,&Ng, Jack.(2024).Ultra-fast and accurate force spectrum prediction and inverse design of light-driven microstructure by deep learning.OPTICS EXPRESS,32(20).
MLA
Wang, Ongyong,et al."Ultra-fast and accurate force spectrum prediction and inverse design of light-driven microstructure by deep learning".OPTICS EXPRESS 32.20(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Ongyong]的文章
[Li, Xiao]的文章
[Ng, Jack]的文章
百度学术
百度学术中相似的文章
[Wang, Ongyong]的文章
[Li, Xiao]的文章
[Ng, Jack]的文章
必应学术
必应学术中相似的文章
[Wang, Ongyong]的文章
[Li, Xiao]的文章
[Ng, Jack]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。