中文版 | English
题名

Data-driven diagnosis framework for platform product supply chains under disruptions

作者
通讯作者Cai, Yiji
发表日期
2024-10-01
DOI
发表期刊
ISSN
0020-7543
EISSN
1366-588X
摘要
Global supply chains face disruptions from geopolitical conflicts, pandemics, and wars. These disruptions exert a long-lasting effect across the supply chain, affecting supply, logistics, and markets. Platform product supply chains, characterised by their diversity of choices within interconnected nodes encompassing product configuration, supply, manufacturing, and delivery, are particularly vulnerable to these disruptions, incurring significant costs and diminished customer satisfaction. Therefore, the ability to diagnose these issues is vital for improving its overall performance. This study introduces a novel three-phase framework for supply chain diagnosis that leverages a data-driven methodology. Initially, the framework employs Generic Bills-of-Materials (GBOM) for qualitative structural mapping of platform products and their supply chains. Subsequently, a network model is constructed to encapsulate intra-nodal and inter-nodal dynamics of the supply chain. The third phase integrates Failure Mode and Effects Analysis (FMEA) with historical data to formalise supply chain domain knowledge, enabling a comprehensive analysis of the supply chain operational state. Finally, a real industrial case is presented, showing the effectiveness of the proposed framework in diagnosing short-, medium-, and long-term decisions. Findings reveal (i) inventory placement yield divergent impacts on the supply chain order fulfilment cycle time (OFCT) and (ii) reducing product variants improves planning accuracy and reduces OFCT.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China["2021YFB3301701","2021YFB3301702"] ; Guangdong Basic and Applied Basic Research Foundation[2023A1515110622] ; Science and Technology Projects in Guangzhou[202201010329] ; The 2019 Guangdong Special Support Talent Program-Innovation and Entrepreneurship Leading Team (China)[2019BT02S593] ; RGC Theme-based Research Scheme[T32-707/22-N]
WOS研究方向
Engineering ; Operations Research & Management Science
WOS类目
Engineering, Industrial ; Engineering, Manufacturing ; Operations Research & Management Science
WOS记录号
WOS:001326940800001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/842831
专题商学院
作者单位
1.Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai, Peoples R China
2.Jinan Univ, Guangdong Int Cooperat Base Sci & Technol GBA Smar, Zhuhai, Peoples R China
3.Jinan Univ, Inst Phys Internet, Zhuhai, Peoples R China
4.Southern Univ Sci & Technol, Coll Business, Shenzhen, Guangdong, Peoples R China
5.Hong Kong Univ Sci & Technol Guangzhou, Smart Mfg Thrust, Syst Hub, Guangzhou, Peoples R China
6.Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hung Hom, Hong Kong, Peoples R China
通讯作者单位商学院
推荐引用方式
GB/T 7714
Li, Mingxing,Cai, Yiji,Guo, Daqiang,et al. Data-driven diagnosis framework for platform product supply chains under disruptions[J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH,2024.
APA
Li, Mingxing,Cai, Yiji,Guo, Daqiang,Qu, Ting,&Huang, George Q..(2024).Data-driven diagnosis framework for platform product supply chains under disruptions.INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH.
MLA
Li, Mingxing,et al."Data-driven diagnosis framework for platform product supply chains under disruptions".INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Mingxing]的文章
[Cai, Yiji]的文章
[Guo, Daqiang]的文章
百度学术
百度学术中相似的文章
[Li, Mingxing]的文章
[Cai, Yiji]的文章
[Guo, Daqiang]的文章
必应学术
必应学术中相似的文章
[Li, Mingxing]的文章
[Cai, Yiji]的文章
[Guo, Daqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。