题名 | Structural Brain Network Generation via Brain Denoising Diffusion Probabilistic Model |
作者 | |
通讯作者 | Wang, Shuqiang |
DOI | |
发表日期 | 2024
|
会议名称 | 1st International Conference on Artificial Intelligence in Healthcare (AIiH)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-67277-4
|
会议录名称 | |
卷号 | 14975
|
会议日期 | SEP 04-06, 2024
|
会议地点 | null,Swansea,ENGLAND
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Alzheimer's disease (AD) significantly impairs the quality of life for a vast patient population and poses treatment challenges, partly due to its elusive pathophysiological mechanisms. The analysis of structural brain networks is fundamental to elucidating these mechanisms. However, acquiring data on such networks is non-trivial, hindered by the slow generation of structural brain network data and the complexities involved in obtaining DTI, a key requisite for their construction. In this study, we introduce a brain denoising diffusion probabilistic model designed to synthesize structural brain networks at various stages of AD, thereby mitigating the difficulties inherent in data acquisition. We trained this model on the ADNI dataset, utilizing two sets of data: one comprising structural brain networks produced by PANDA, and the other amalgamating these PANDA-generated networks with those synthesized by our model. Both datasets were employed to train a DiffPool for subsequent diagnostic tasks. It can be seen that the brain networks generated by the brain denoising diffusion probabilistic model are beneficial for structural brain networks in downstream diagnostic tasks. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundations of China[62172403]
; Distinguished Young Scholars Fund of Guangdong[2021B1515020019]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Biomedical
|
WOS记录号 | WOS:001308380900021
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/842857 |
专题 | 南方科技大学 |
作者单位 | 1.South Univ Sci & Technol China, Shenzhen, Peoples R China 2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Jiang, Hongjie,Chen, Xuhang,Jin, Changhong,et al. Structural Brain Network Generation via Brain Denoising Diffusion Probabilistic Model[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论