题名 | Enhancing Sharpness-Aware Minimization by Learning Perturbation Radius |
作者 | |
通讯作者 | Zhang, Yu |
DOI | |
发表日期 | 2024
|
会议名称 | Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD)
|
ISSN | 2945-9133
|
EISSN | 1611-3349
|
ISBN | 978-3-031-70343-0
|
会议录名称 | |
卷号 | 14942
|
会议日期 | SEP 09-13, 2024
|
会议地点 | null,Vilnius,LITHUANIA
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Sharpness-aware minimization (SAM) is to improve model generalization by searching for flat minima in the loss landscape. The SAM update consists of one step for computing the perturbation and the other for computing the update gradient. Within the two steps, the choice of the perturbation radius is crucial to the performance of SAM, but finding an appropriate perturbation radius is challenging. In this paper, we propose a bilevel optimization framework called LEarning the perTurbation radiuS (LETS) to learn the perturbation radius for sharpness-aware minimization algorithms. Specifically, in the proposed LETS method, the upper-level problem aims at seeking a good perturbation radius by minimizing the squared generalization gap between the training and validation losses, while the lower-level problem is the SAM optimization problem. Moreover, the LETS method can be combined with any variant of SAM. Experimental results on various architectures and benchmark datasets in computer vision and natural language processing demonstrate the effectiveness of the proposed LETS method in improving the performance of SAM. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | NSFC[62136005]
; NSFC general grant[62076118]
; Shenzhen fundamental research program[JCYJ20210324105000003]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001308375100022
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/842858 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 2.Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Wang, Xuehao,Jiang, Weisen,Fu, Shuai,et al. Enhancing Sharpness-Aware Minimization by Learning Perturbation Radius[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论