1. Weisgrab G, Ovsianikov A, Costa PF. Functional 3D printing for microfluidic chips. Advanced Materials Technologies. 2019;4(10):1900275.
2. Yang B, Metier JL, Lin Q. Using compliant membranes for dynamic flow stabilization in microfluidic systems. In18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005. 2005 Jan 30 (pp. 706-709). IEEE.
3. Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chemical reviews. 2013;113(4):2550-83.
4. Rhee M, Light YK, Yilmaz S, Adams PD, Saxena D, Meagher RJ, et al. Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems. LAB ON A CHIP. 2014;14(23):4533-9.
5. Yang B, Lin Q. A Compliance-Based Microflow Stabilizer. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS. 2009;18(3):539-46.
6. Xiang N, Ni Z. Hand-Powered Inertial Microfluidic Syringe-Tip Centrifuge. Biosensors. 2021 Dec 29;12(1):14.
7. Xia HM, Wu JW, Zheng JJ, Zhang J, Wang ZP. Nonlinear microfluidics: device physics, functions, and applications. LAB ON A CHIP. 2021;21(7):1241-68.
8. Sen AK, Bhardwaj P. Microfluidic System for Rapid Enumeration and Detection of Microparticles. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME. 2012;134(11):111401.
9. Chong ZZ, Tan SH, Gañán-Calvo AM, Tor SB, Loh NH, Nguyen N-T. Active droplet generation in microfluidics. Lab on a Chip. 2016;16(1):35-58.
10. Lin L, Wu X, He W, Chen L. Methods and Experimental Research of Eliminating the Pulse of Piezoelectric Micro-fluidic System. In2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO) 2018 Jul 23 (pp. 1-4).
11. Lee C-Y, Chang C-L, Wang Y-N, Fu L-M. Microfluidic mixing: a review. International journal of molecular sciences. 2011;12(5):3263-87.
12. Sochol RD, Sweet E, Glick CC, Wu S-Y, Yang C, Restaino M, et al. 3D printed microfluidics and microelectronics. Microelectronic Engineering. 2018;189:52-68.
13. Comina G, Suska A, Filippini D. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip. 2014;14(2):424-30.
14. Choudhury S, Dutta S, Chatterjee S. Cost-effective template development for the microfluidic device. Micro & Nano Letters. 2019;14(8):860-4.
15. Monaghan T, Harding MJ, Harris RA, Friel RJ, Christie SDR. Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab on a Chip. 2016;16(17):3362-73.
16. Xie X, Maharjan S, Liu S, Zhang YS, Livermore C. A modular, reconfigurable microfabricated assembly platform for microfluidic transport and multitype cell culture and drug testing. Micromachines. 2019 Dec 18;11(1):2.
17. Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip. 2014;14(7):1294-301.
18. Ho CMB, Ng SH, Li KHH, Yoon YJ. 3D printed microfluidics for biological applications. Lab on a Chip. 2015;15(18):3627-37.
19. Nie J, Fu J, He Y. Hydrogels: the next generation body materials for microfluidic chips? Small. 2020;16(46):2003797.
20. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, et al. 3D printed microfluidic devices: enablers and barriers. Lab on a Chip. 2016;16(11):1993-2013.
21. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L. Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices. Lab on a Chip. 2012;12(18):3267-71.
22. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D printed microfluidics. Annual Review of Analytical Chemistry. 2020 Jun 12;13(1):45-65.
23. Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proceedings of the National Academy of Sciences. 2014;111(42):15013-8.
24. Adamski K, Kubicki W, Walczak R. Inkjet 3D printed microfluidic devices. In2016 MIXDES-23rd International Conference Mixed Design of Integrated Circuits and Systems 2016 Jun 23 (pp. 504-506). IEEE.
25. Jeong OC, Konishi S. The self-generated peristaltic motion of cascaded pneumatic actuators for micro pumps. Journal of Micromechanics and Microengineering. 2008 Jul 18;18(8):085017.
26. Wu C-H, Chen C-W, Kuo L-S, Chen P-H. A Novel Approach to Measure the Hydraulic Capacitance of a Microfluidic Membrane Pump. Advances in Materials Science and Engineering. 2014;2014:1-8.
27. Oh KW, Lee K, Ahn B, Furlani EP. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab on a Chip. 2012;12(3):515-45.
28. Mosadegh B, Kuo C-H, Tung Y-C, Torisawa Y-s, Bersano-Begey T, Tavana H, et al. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nature physics. 2010;6(6):433-7.
29. Abgrall P, Gue AM. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. Journal of micromechanics and microengineering. 2007 Apr 24;17(5):R15.
30. Kim D, Chesler NC, Beebe DJ. A method for dynamic system characterization using hydraulic series resistance. Lab Chip. 2006;6(5):639-44.31. Wang YN, Fu LM. Micropumps and biomedical applications–A review. Microelectronic Engineering. 2018 Aug 5;195:121-38.32. Raj A, Suthanthiraraj PP, Sen AK. Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics. Microfluidics and Nanofluidics. 2018 Nov;22(11):128.33. Phillips RH, Jain R, Browning Y, Shah R, Kauffman P, Dinh D, et al. Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices. LAB ON A CHIP. 2016;16(17):3260-7.34. Kang YJ, Yang S. Fluidic low pass filter for hydrodynamic flow stabilization in microfluidicenvironments. Lab Chip. 2012;12(10):1881-9.35. Leslie DC, Easley CJ, Seker E, Karlinsey JM, Utz M, Begley MR, et al. Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nature Physics. 2009;5(3):231.36. Zeng W, Fu H. Precise measurement and control of the pressure-driven flows for microfluidic systems. Electrophoresis. 2020;41(10-11):852-9.37. Lim YC, Kouzani AZ, Duan W. Lab-on-a-chip: a component view. Microsystem Technologies. 2010 Dec;16:1995-2015.38. Naderi A, Bhattacharjee N, Folch A. Digital manufacturing for microfluidics. Annual review of biomedical engineering. 2019;21:325.39. Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip. 2016;16(13):2376-96.40. Martinez-Garcia S, Juan Dede-Garcia E, Carlos Campo-Rodriguez J, Joseph Bradley P, Rueda-Boldo P, Monteso-Fernandez S, et al. Present and future of the power electronics (I). Introduction and high-power applications. DYNA. 2010;85(4):315-30.41. Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences. 2021;22(4):2011.42. Yeo LY, Chang HC, Chan PP, Friend JR. Microfluidic devices for bioapplications. small. 2011;7(1):12-48.43. Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, et al. Recent advances of controlled drug delivery using microfluidic platforms. Advanced drug delivery reviews. 2018;128:3-28.44. Chen B, Li G, Wang W, Wang P. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the Volume-Of-Fluid method. Applied Thermal Engineering. 2015;88:94-101.45. Chen X, Glawdel T, Cui N, Ren CL. Model of droplet generation in flow focusing generators operating in the squeezing regime. Microfluidics and Nanofluidics. 2015;18(5-6):1341-53.46. Lee C, Kim M, Kim YJ, Hong N, Ryu S, Kim HJ, et al. Soft robot review. International Journal of Control, Automation and Systems. 2017;15(1):3-15.47. Cianchetti M, Laschi C, Menciassi A, Dario P. Biomedical applications of soft robotics. Nature Reviews Materials. 2018;3(6):143-53.48. Hubbard JD, Acevedo R, Edwards KM, Alsharhan AT, Wen Z, Landry J, et al. Fully 3D-printed soft robots with integrated fluidic circuitry. Science Advances. 2021;7(29):eabe5257.49. Kim SJ, Lai D, Park JY, Yokokawa R, Takayama S. Microfluidic Automation Using Elastomeric Valves and Droplets: Reducing Reliance on External Controllers. SMALL. 2012;8(19):2925-34.50. Jiao, Z., Zhao, J., Chao, Z., You, Z., & Zhao, J. (2019). An air-chamber-based microfluidic stabilizer for attenuating syringe-pump-induced fluctuations. Microfluidics and Nanofluidics, 23, 1-10.14351. Araci IE, Agaoglu S, Lee JY, Yepes LR, Diep P, Martini M, et al. Flow stabilization in wearable microfluidic sensors enables noise suppression. Lab on a Chip. 2019;19(22):3899-908.52. Kalantarifard A, Alizadeh Haghighi E, Elbuken C. Damping hydrodynamic fluctuations in microfluidic systems. Chemical Engineering Science. 2018;178:238-47.53. Zhu HL, Fohlerova Z, Pekarek J, Basova E, Neuzil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors & Bioelectronics. 2020;153.54. Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Accounts of chemical research. 2013;46(11):2396-406.55. Boonyaphon K, Takayama S, Kim S-J. Microfluidic random number generator driven by water-head pressure and human finger push. Sensors and Actuators A: Physical. 2020;302:111802.56. Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials. 2018;3(8):257-78.57. Jen CP, Lin YC, Wu WD, Wu CY, Wu GG, Chang CC. Improved design and experimental demonstration of a bi-directional microfluidic driving system. Sensors and Actuators B-Chemical. 2003;96(3):701-8.58. Paschew G, Schreiter JR, Voigt A, Pini C, Chávez JP, Allerdi?En M, et al. Autonomous Chemical Oscillator Circuit Based on Bidirectional Chemical‐Microfluidic Coupling. Advanced Materials Technologies. 2016;1(1).59. Kim S-J, Yokokawa R, Takayama S. Microfluidic oscillators with widely tunable periods. Lab on a Chip. 2013;13(8):1644-8.60. Wu C, Chen R, Liu Y, Yu Z, Jiang Y, Cheng X. A planar dielectrophoresis-based chip for high-throughput cell pairing. Lab Chip. 2017;17(23):4008-14.61. Tzekaki E, Tsolaki M, Pantazaki A. Technical characteristics of Alzheimer model based on organ technology (organoid). Hellenic Journal of Nuclear Medicine. 2019;22:195-208.62. Khorsandi D, Nodehi M, Waqar T, Shabani M, Kamare B, Zare EN, et al. Manufacturing of Microfluidic Sensors Utilizing 3D Printing Technologies: A Production System. Journal of Nanomaterials. 2021;2021.63. Xiang N, Han Y, Jia Y, Shi Z, Yi H, Ni Z. Flow stabilizer on a syringe tip for hand-powered microfluidic sample injection. LAB ON A CHIP. 2019;19(2):214-22.64. Lee J, Rahman F, Laoui T, Karnik R. Bubble-induced damping in displacement-driven microfluidic flows. PHYSICAL REVIEW E. 2012;86(2).65. Gruner P, Riechers B, Orellana LAC, Brosseau Q, Maes F, Beneyton T, et al. Stabilisers for water-in-fluorinated-oil dispersions: Key properties for microfluidic applications. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE. 2015;20(3):183-91.66. Ma C, Peng YS, Li HT, Chen WQ. Organ-on-a-Chip: A New Paradigm for Drug Development. Trends in Pharmacological Sciences. 2021;42(2):119-33.67. Zhou Y, Liu J, Yan J, Zhu T, Guo S, Li S, Li T. Standing air bubble-based micro-hydraulic capacitors for flow stabilization in syringe pump-driven systems. Micromachines. 2020 Apr 10;11(4):396.68. Södergren S, Svensson K, Hjort K. Microfluidic active pressure and flow stabiliser.Scientific Reports. 2021 Nov 18;11(1):22504.69. Tung TT, Karunagaran R, Tran DNH, Gao B, Nag-Chowdhury S, Pillin I, et al. Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. JOURNAL OF MATERIALS CHEMISTRY C. 2016;4(16):3422-30.70. Marck J. A nonlinear dynamical model of borehole spiraling (Doctoral dissertation, University of Minnesota).71. Belhaiba A, El Ghazal N, Chraygane M, Bahani B, Ahmedou MO, Ferfra M. Modeling of a power Balance for microwaves generator with one magnetron. 2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS); 20122012. p. 1024-8.72. Groisman A, Enzelberger M, Quake SR. Microfluidic memory and control devices. SCIENCE. 2003;300(5621):955-8.73. Iyer V, Raj A, Annabattula RK, Sen AK. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization. Journal of Micromechanics and Microengineering. 2015 May 22;25(7):075003.74. Cousseau P, Hirschi R, Frehner B, Gamper S, Maillefer D, editors. Improved micro-flow regulator for drug delivery systems. Technical Digest MEMS 2001 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat No 01CH37090); 2001: IEEE.75. Cerdeira ATS, Campos JBLM, Miranda JM, Araujo JDP. Review on Microbubbles and Microdroplets Flowing through Microfluidic Geometrical Elements. MICROMACHINES. 2020;11(2).76. Gao D, Chang R, Lu B, Ma J. Progress on Controllable Preparation of Janus Nanomaterials. Polymer Materials Science & Engineering. 2019;35(1):168-75.77. Lee M, Lee EY, Lee D, Park BJ. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. SOFT MATTER. 2015;11(11):2067-79.78. Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. ACTA PHARMACEUTICA SINICA B. 2019;9(1):4-18.79. Deng B, de Ruiter J, Schroen K. Application of Microfluidics in the Production and Analysis of Food Foams. FOODS. 2019;8(10).80. Choi A, Seo KD, Kim DW, Kim BC, Kim DS. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications. LAB ON A CHIP. 2017;17(4):591-613.81. Cairone F, Sanalitro D, Bucolo M, Ortiz D, Cabrales PJ, Intaglietta M. DPIV analysis of RBCs flows in serpentine micro-channel. In2017 European Conference on Circuit Theory and Design (ECCTD) 2017 Sep 4 (pp. 1-4). IEEE.82. Afrasiab H, Movahhedy MR, Assempour A. Fluid-structure interaction analysis in microfluidic devices: A dimensionless finite element approach. International Journal for Numerical Methods in Fluids. 2012;68(9):1073-86.83. Zhang DD, Wei SS, Wang GL, Wei CZ. Dynamics Research of Ultrasonic Peristaltic Micro-Fluid Driving Model. Advanced Materials Research. 2011 Apr 20;199:1391-6.84. Wang YC, Lin SH, Jang D. Unsteady Analysis of the Flow Rectification Performance ofConical Microdiffuser Valves for Valveless Micropump Applications. Journal of Mechanics. 2010;26(3):299-307.85. Bai G, Wei S, Jiang C, Jiang X. Dynamic characteristic research of traveling wave driving microfluid model. In2006 IEEE International Conference on Information Acquisition 2006 Aug 20 (pp. 430-434). IEEE.86. Yang X, Zhou Z, Ye X. Simulation and experimental studies on a micro diaphragm air pump actuated by PZT. InMicrofluidics, BioMEMS, and Medical Microsystems III 2005 Jan 22 (Vol. 5718, pp. 283-290). SPIE..87. Li W, Zhuge W, Jiang Y, Jiang K, Ding J, Cheng X. A compact modularized power-supply system for stable flow generation in microfluidic devices. Microfluidics and Nanofluidics. 2023;27(12):80.88. Zhang X, Zhu Z, Xiang N, Ni Z. A microfluidic gas damper for stabilizing gas pressure in portable microfluidic systems. Biomicrofluidics. 2016 Sep 1;10(5).89. Wu J, Hirai Y, Kamei KI, Tsuchiya T, Tabata O. Novel microfluidic device integrated with a fluidic‐capacitor to mimic heart beating for generation of functional liver organoids. Electronics and Communications in Japan. 2019;102(10):41-9.90. Jackson WC, Tran HD, O’Brien MJ, Rabinovich E, Lopez GP. Rapid prototyping of active microfluidic components based on magnetically modified elastomeric materials. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2001 Mar 1;19(2):596-9.91. Ghosal S. Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. JOURNAL OF FLUID MECHANICS. 2002;459:103-28.92. Ajdari A. Steady flows in networks of microfluidic channels: building on the analogy with electrical circuits. Comptes Rendus Physique. 2004;5(5):539-46.93. Lam EW, Cooksey GA, Finlayson BA, Folch A. Microfluidic circuits with tunable flow resistances. APPLIED PHYSICS LETTERS. 2006;89(16).94. Lee K, Kim C, Ahn B, Panchapakesan R, Full AR, Nordee L, et al. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab on a Chip. 2009;9(5):709-17.95. Leslie DC, Easley CJ, Seker E, Karlinsey JM, Utz M, Begley MR, et al. Frequency-specific flow control in microfluidic circuits with passive elastomeric features. NATURE PHYSICS. 2009;5(3):231-5.96. Tsuda S, Jaffery H, Doran D, Hezwani M, Robbins PJ, Yoshida M, et al. Customizable 3D printed ‘plug and play’millifluidic devices for programmable fluidics. PLoS One. 2015;10(11):e0141640.97. Toepke MW, Abhyankar VV, Beebe DJ. Microfluidic logic gates and timers. LAB ON A CHIP. 2007;7(11):1449-53.98. Mosadegh B, Kuo CH, Tung YC, Torisawa YS, Bersano-Begey T, Tavana H, et al. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. NATURE PHYSICS. 2010;6(6):433-7.99. Kim SJ, Yokokawa R, Cai Lesher-Perez S, Takayama S. Multiple independentautonomous hydraulic oscillators driven by a common gravity head. Nature communications. 2015 Jun 15;6(1):7301.100. Zhou Z, Xu M, Zhu C, He G, Zhang K, Sun D. Multistage Digital-to-Analogue Chip Based on a Weighted Flow Resistance Network for Soft Actuators. Micromachines. 2021 Aug 26;12(9):1016.101. Capel AJ, Edmondson S, Christie SD, Goodridge RD, Bibb RJ, Thurstans M. Design and additive manufacture for flow chemistry. Lab on a Chip. 2013;13(23):4583-90.102. Farahani RD, Dube M, Therriault D. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Advanced Materials. 2016;28(28):5794-821.103. Huang LB, Yung KL, Xu Y, Xie YC. Injection molded plastic microfluidic biochips with integrated pumping electrode. In2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems 2010 Jan 20 (pp. 1017-1020). IEEE.104. Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing. 2019;35:1286-96.105. Zhou LY, Fu J, He Y. A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials. 2020;30(28):2000187.106. Wang X, Jiang H, Chen Y, Qiao X, Dong L. Microblower-based microfluidic pump. Sensors and Actuators A: Physical. 2017;253:27-34.107. Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L. Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices. Lab Chip. 2012;12(18):3267-71.108. Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Design and Manufacturing. 2021;4(2):311-43.109. Eren O, Çuhadaroğlu MB, Sezer K. Additive Manufacturing of Microfluidic Lab-on-a-Chip Devices. International Journal of 3D Printing Technologies and Digital Industry. 2021;5(3):692-708.110. Au AK, Huynh W, Horowitz LF, Folch A. 3D-Printed Microfluidics. Angewandte Chemie-International Edition. 2016;55(12):3862-81.111. Vittayarukskul K, Lee AP. A truly Lego®-like modular microfluidics platform. Journal of Micromechanics and Microengineering. 2017;27(3):035004.112. Sochol R, Sweet E, Glick C, Venkatesh S, Avetisyan A, Ekman K, et al. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab on a Chip. 2016;16(4):668-78.113. Kanitthamniyom P, Zhou A, Feng S, Liu A, Vasoo S, Zhang Y. A 3D-printed modular magnetic digital microfluidic architecture for on-demand bioanalysis. Microsystems & Nanoengineering. 2020;6(1):48.114. Lee Y, Kim B, Oh I, Choi S. Optofluidic Modular Blocks for On-Demand and Open- Source Prototyping of Microfluidic Systems. Small. 2018;14(52):1802769.115. Kato N, Oka R, Sakai T, Shibata T, Kawashima T, Nagai M, Mineta T, Makino E. Experimental and computational analysis of water-droplet formation and ejection process using hollow microneedle. Japanese Journal of Applied Physics. 2011 Jun20;50(6R):067202.116. Celata GP, Cumo M, McPhail S, Zummo G. Characterization of fluid dynamic behaviour and channel wall effects in microtube. International Journal of Heat and Fluid Flow. 2006;27(1):135-43.117. Zengerle R, Richter M. Simulation of microfluid systems. Journal of Micromechanics and Microengineering. 1994;4(4):192.118. Vaicekauskaite J, Mazurek P, Vudayagiri S, Skov AL. Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers. Journal of Materials Chemistry C. 2020;8(4):1273-9.119. Vaicekauskaite J, Mazurek P, Vudayagiri S, Skov AL. Silicone elastomer map: Design the ideal elastomer. InElectroactive Polymer Actuators and Devices (EAPAD) XXI 2019 Mar 13 (Vol. 10966, pp. 297-305). SPIE.120. Herren B, Saha MC, Altan MC, Liu Y. Development of ultrastretchable and skin attachable nanocomposites for human motion monitoring via embedded 3D printing. Composites Part B: Engineering. 2020 Nov 1;200:108224.121. Li Z, Mak SY, Sauret A, Shum HC. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab on a Chip. 2014;14(4):744-9.122. Zhou B, Gao Y, Tian J, Tong R, Wu J, Wen W. Preparation of orthogonal physicochemical gradients on PDMS surface using microfluidic concentration gradient generator. Applied Surface Science. 2019;471:213-21.
修改评论